Skip to main content
Log in

Adhesion, spreading, and proliferation of cells on protein carpets: Effects of stability of a carpet

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In the present report we have investigated the role that the physical properties of substrata play in modulating the effects which components of extracellular matrix (ECM) exert on adhesion, spreading, and growth of retinal pigmented epithelial cells. By simple modifications of conditions for protein adsorption on glass we obtained a set of substrata all coated with proteins of ECM (protein carpets) but with different physical properties. Using these protein carpets we have shown that their stability (desorption rate) in tissue culture conditions varies according to the technique with which they were prepared. Both semiremovable and immobilized carpets are stable, whereas removable protein carpets desorb readily. Therefore, the protein concentration or composition or both may change with time in tissue culture depending on the technique used to prepare the carpet. In addition, efficacy of cell attachment to given protein may vary depending on whether a technique used to prepare the protein carpet involves denaturation of the protein. Adherent cells quickly remove (clear) weakly adsorbed protein carpets and it seems that the carpet removal is a mechanical process. During the carpet removal cells are rounded, which indicates that a spread cell phenotype normally associated with stress fibers and focal contacts occurs when the substratum is rigid enough to sustain cell traction. In addition, substrata lacking the rigidity to support the spread phenotype do not support cell proliferation either.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aplin, J. D.; Hughes, R. C. Protein-derivatized glass coverslips for the study of cell-to-substratum adhesion. Anal. Biochem. 113:144–148; 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Aptel, J. D.; Carroy, A; Dejardin, P., et al. Adsorption and desorption of synthetic and biological macromolecules at solid-liquid interfaces: equilibrium and kinetic properties. Am. Chem. Soc. Symp. 343:222–238; 1987.

    CAS  Google Scholar 

  3. Avnur, Z.; Geiger, B. The removal of extracellular fibronectin from areas of cell-substrate contact. Cell 25:121–132; 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Ben-Ze’ev, A. The relationship between cytoplasmic organization, gene expression and morphogenesis. TIBS 11:478–481; 1986.

    CAS  Google Scholar 

  5. Ben-Ze’ev, A. Cell shape and cell contacts: molecular approaches to cytoskeletal expression. In: Stein, W. D.; Bronner, F., eds. Cell shape: determinants, regulation, and regulatory role. San Diego, CA: Academic Press; 1989:95–119.

    Google Scholar 

  6. Ben-Ze’ev, A.; Amsterdam, A. Regulation of cytoskeletal proteins involved in cell contact formation during differentiation of granulosa cells on extracellular matrix. Proc. Natl. Acad. Sci. USA 83:2894–2898; 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Ze’ev, A.; Robinson, G. S.; Bucher, N. L. R., et al. Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc. Natl. Acad. Sci. USA 85:2161–2165; 1988.

    Article  PubMed  CAS  Google Scholar 

  8. Chan, B. M. C.; Brash, J. L. Adsorption of fibrinogen on glass: reversibility aspects. J. Colloid Interface Sci. 82:217–255; 1981.

    Article  CAS  Google Scholar 

  9. Connor, N. S.; Aubin, J. E.; Sodek, J. Independent expression of type I collagen and fibronectin by normal fibroblast-like cells. J. Cell Sci. 63:233–244; 1983.

    PubMed  CAS  Google Scholar 

  10. Danowski, B. A.; Harris, A. K. Changes in fibroblast contractility, morphology, and adhesion in response to a phorbol ester tumor promoter. Exp. Cell Res. 177:47–59; 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Farmer, S. R.; Dike, L. E. Cell shape and growth control: role of cytoskeleton-extracellular matrix interactions. In: Stein, W. D.; Bronner, F., eds. Cell shape: determinants, regulation, and regulatory role. San Diego, CA: Academic Press; 1989:173–202.

    Google Scholar 

  12. Farsi, J. M. A.; Aubin, J. E. Microfilament rearrangements during fibroblast-induced contraction of three-dimensional hydrated collagen gels. Cell Motil. 4:29–40; 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Folkman, J.; Moscona, A. Role of cell shape in growth control. Nature 273:345–349; 1978.

    Article  PubMed  CAS  Google Scholar 

  14. Grinnell, F. Focal adhesion sites and the removal of substratum-bound fibronectin. J. Cell Biol. 103:2697–2706; 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Guidry, C.; Grinnell, F. Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts. J. Cell Sci. 79:67–81; 1985.

    PubMed  CAS  Google Scholar 

  16. Guidry, C.; Grinnell, F. Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts. J. Cell Biol. 104:1097–1103; 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Haas, R.; Culp, L. A. Properties and fate of plasma fibronectin bound to the tissue culture substratum. J. Cell. Physiol. 113:289–297; 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Hadley, M. A.; Byers, S. W.; Suarez-Quion, C. A., et al. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell Biol. 101:1511–1522; 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Harris, A. K. Traction, and its relations to contraction in tissue cell locomotion. In: Bellairs, R.; Curtis, A. S. G.; Dunn, G., eds. Cell behavior. England: Cambridge University Press; 1982:109–134.

    Google Scholar 

  20. Harris, A. K. Tissue culture cells on deformable substrata: biomechanical implications. J. Biomech. Eng. 106:19–24; 1984.

    Article  PubMed  Google Scholar 

  21. Harris, A. K.; Wild, P.; Stopak, D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179; 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Horton, H. R.; Swaisgood, H. E. Covalent immobilization of proteins by techniques which permit subsequent release. Methods Enzymol. 135:130–141; 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Ingber, D. E.; Madri, J. A.; Folkman, J. D. Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell Dev. Biol. 23:387–394; 1987.

    Article  PubMed  CAS  Google Scholar 

  24. Ingber, D. E.; Folkman, J. D. Tension and compression as basic determinants of cell form and function: utilization of a cellular tensegrity mechansim. In: Stein, W. D.; Bronner, F., eds. Cell Shape: determinants, regulation, and regulatory role. San Diego, CA: Academic Press; 1989:3–31.

    Google Scholar 

  25. Kelley, C.; D’Amore, P.; Hechtman, H. B., et al. Microvascular pericyte contractility in vitro: comparison with other cells of the vascular wall. J. Cell. Biol. 104:483–490; 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Kleinman, H. K.; McGarvey, M. L.; Mossel, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 28:312–318; 1986.

    Article  Google Scholar 

  27. Lewandowska, K.; Kaetzel, C. S.; Zardi, L., et al. Binding characteristics of complementary fibronectin fragments on artificial substrata. FEBS Lett. 237:35–39; 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Li, M. J.; Aggeler, J.; Farson, D. A., et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136–140; 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Opas, M. The transmission of forces between cells and their environment. In: Bereiter-Hahn, J.; Anderson, O. R.; Reif, W. E., eds. Cytomechanics. Heidelberg, Germany: Springer-Verlag; 1987:273–285.

    Google Scholar 

  30. Opas, M. Adhesion of cells to protein carpets: Do cells’ feet have to be black? Cell Motil. Cytoskeleton 11:178–181; 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Opas, M. Expression of the differentiated phenotype by epithelial cells in vitro is regulated by both biochemistry and mechanics of the substratum. Dev. Biol. 131:281–293; 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Opas, M.; Dziak, E. Effects of substrata and method of tissue dissociation on adhesion, cytoskeleton and growth of chick retinal pigmented epithelium in vitro. In Vitro Cell. Dev. Biol. 24:885–892; 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Opas, M.; Dziak, E. Effects of a tumour promoter, 12-O-tetradecanoyl-phorbol-13-acetate, on expression of differentiated phenotype in epithelial cells, and their interactions with the native basement membrane and with artificial substrata. Differentiation 43:20–28; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Oster, G. F.; Murray, J. D.; Harris, A. K. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78:83–125; 1983.

    PubMed  CAS  Google Scholar 

  35. Tucker, R. P.; Edwards, B. F.; Erickson, C. A. Tension in the culture dish: microfilament organization and migratory behaviour of quail neural crest cells. Cell Motil. 5:225–237; 1985.

    Article  PubMed  CAS  Google Scholar 

  36. Watt, F. M. The extracellular matrix and cell shape. TIBS 11:482–485; 1986.

    CAS  Google Scholar 

  37. Watt, F. M.; Jordan, P. W.; O’Neill, C. H. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl. Acad. Sci. USA 85:5576–5580; 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opas, M., Dziak, E. Adhesion, spreading, and proliferation of cells on protein carpets: Effects of stability of a carpet. In Vitro Cell Dev Biol - Animal 27, 878–885 (1991). https://doi.org/10.1007/BF02630991

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630991

Key words

Navigation