Skip to main content
Log in

Secretion of polypeptides related to epidermal growth factor and insulinlike growth factor I by a human teratocarcinoma cell line

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

To identify polypeptide growth factors for human teratocarcinoma cells, we studied the malignant ovarian teratoma-derived cell line, PA-1, that grew autonomously in serum-free medium. Medium conditioned by undifferentiated PA-1 cells strongly stimulated proliferation of the mouse mammary tumor cell line, GR 2H6, which is responsive to epidermal growth factor (EGF) and insulinlike growth factor-I (IGF-I). After ammonium sulfate precipitation, PA-1 conditioned medium was analyzed by anion exchange chromatography and bioassay of elution fractions on GR 2H6 cells that were grown in medium deficient in either EGF or insulin. The results demonstrated that PA-1 CM contained factors that can substitute for EGF and IGF-I in stimulating growth of GR 2H6 cells. Western blots of peak mitogenic fractions revealed low molecular weight polypeptides that were immunoreactive with either anti-EGF or anti-IGF-I antibodies. Indirect immunofluorescence staining of PA-1 cells with monoclonal antibodies localized receptors for each growth factor, and binding of human EGF and IGF-I to these cells was quantified by radioreceptor assays. Secretion of factors closely related to EGF and IGF-I by PA-1 cells under serum-free conditions may provide a novel model system to study molecular mechanisms of autocrine growth stimulation in teratocarcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamson, E. D.; Meek, J. The ontogeny of epidermal growth factor receptors during mouse development. Dev. Biol. 103:62–70; 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Betsholtz, C.; Westermark, B.; Ek, B., et al. Coexpression of a PDGF-like growth factor and PDGF receptors in a human osteosarcoma cell line: implications for autocrine receptor activation. Cell 39:447–457; 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Braunhut, S. J.; Gudas, L. J.; Kurokawa, T., et al. Expression of fibroblast growth factor by F9 teratocarcinoma cells as a function of differentiation. J. Cell Biol. 108:2467–2476; 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Campisi, J.; Gray, H. E.; Pardee, A. B., et al. Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell 36:241–247; 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Carlin, C. R.; Andrews, P. W. Human embryonal carcinoma cells express low levels of functional receptor for epidermal growth factor. Exp. Cell Res. 159:17–26; 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Ciccodicola, A.; Dono, R.; Obici, S., et al. Molecular characterization of a gene of the ‘EGF family’ expressed in undifferentiated human NTERA2 teratocarcinoma cells. EMBO J. 8:1987–1991; 1989.

    PubMed  CAS  Google Scholar 

  7. Han, V. K. M.; D’Ercole, A. J.; Lund, P. K. Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science 236:193–197; 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Heath, J. K.; Deller, M. J. Serum-free culture of PC13 murine embryonal carcinoma cells. J. Cell. Physiol. 115:225–230; 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Heath, J. K.; Paterno, G. D.; Lindon, A. C., et al. Expression of multiple heparin-binding growth factor species by murine embryonal carcinoma and embryonic stem cells. Development 107:113–122; 1989.

    PubMed  CAS  Google Scholar 

  10. Heath, J. K.; Shi, W. K. Developmentally regulated expression of insulin-like growth factors by differentiated murine teratocarcinomas and extraembryonic mesoderm. J. Embryol. Exp. Morphol. 95:193–212; 1986.

    PubMed  CAS  Google Scholar 

  11. Hinegardner, R. T. An improved fluorometric assay for DNA. Anal. Biochem. 39:197–201; 1971.

    Article  PubMed  CAS  Google Scholar 

  12. Kawata, M.; Sekiya, S.; Hatakeyama, R., et al. Neuron-specific enolase as a serum marker for immature teratoma and dysgerminoma. Gynecol. Oncol. 32:191–197; 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Keating, M. T.; Williams, L. T. Autocrine stimulation of intracellular PDGF receptors in v-sis-transformed cells. Science 239:914–916; 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  15. Lang, R. A.; Burgess, A. W. Autocrine growth factors and tumourigenic transformation. Immunol. Today 11:244–249; 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Leof, E. B.; Wharton, W.; Van Wyk, J. J., et al. Epidermal growth factor (EGF) and somatomedin C regulate G1 progression in competent BALB/c-3T3 cells. Exp. Cell Res. 141:107–115; 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Lund, P. K.; Moats-Staats, B. M.; Hynes, M. A., et al. Somatomedin-C/insulin-like growth factor-I and insulin-like growth factor-II mRNAs in rat fetal and adult tissue. J. Biol. Chem. 261:14539–14544; 1986.

    PubMed  CAS  Google Scholar 

  18. Marquardt, H.; Hunkapiller, M. W.; Hood, L. E., et al. Rat transforming growth factor type 1: structure and relation to epidermal growth factor. Science 223:1079–1082; 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Martin, G. R. Teratocarcinomas and mammalian embryogenesis. Science 209:768–776; 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Martin, G. R.; Evans, M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodiesin vitro. Proc. Natl. Acad. Sci. USA 72:1441–1445; 1975.

    Article  PubMed  CAS  Google Scholar 

  21. Martin, G. R.; Smith, S.; Epstein, C. J. Protein synthetic patterns in teratocarcinoma stem cells and mouse embryos at early stages of development. Dev. Biol. 66:8–16; 1978.

    Article  PubMed  CAS  Google Scholar 

  22. Mercola, M.; Stiles, C. D. Growth factor superfamilies and mammalian embryogenesis. Development 102:451–460; 1988.

    PubMed  CAS  Google Scholar 

  23. Mintz, B.; Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 72:3585–3589; 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Murthy, U.; Basu, M.; Sen-Majumdar, A., et al. Perinuclear location and recycling of epidermal growth factor receptor kinase: immunofluorescence visualization using antibodies directed to kinase and extracellular domains. J. Cell Biol. 103:333–342; 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Nagarajan, L.; Anderson, W. B.; Nissley, S. P., et al. Production of insulin-like growth factor-II (MSA) by endoderm-like cells derived from embryonal carcinoma cells: possible mediator of embryonic cell growth. J. Cell. Physiol. 124:199–206; 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Nexo, E.; Hollenberg, M. D.; Figueroa, A., et al. Detection of epidermal growth factor-urogastrone and its receptor during fetal mouse development. Proc. Natl. Acad. Sci. USA 77:2782–2785; 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Nicolas, J. F.; Avner, P.; Gaillard, J., et al. Cell lines derived from teratocarcinomas. Cancer Res. 36:4224–4231; 1976.

    PubMed  CAS  Google Scholar 

  28. Popliker, M.; Shatz, A.; Avivi, A., et al. Onset of endogenous synthesis of epidermal growth factor in neonatal mice. Dev. Biol. 119:38–44; 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Rao, L. V.; Wikarczuk, M. L.; Heyner, S. Functional roles of insulin and insulinlike growth factors in preimplantation mouse embryo development. In Vitro Cell. Dev. Biol. 26:1043–1048; 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Rees, A. R.; Adamson, E. D.; Graham, C. F. Epidermal growth factor receptors increase during the differentiation of embryonal carcinoma cells. Nature 281:309–311; 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Rizzino, A.; Crowley, C. Growth and differentiation of embryonal carcinoma cell line F9 in defined medium. Proc. Natl. Acad. Sci. USA 77:457–461; 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Rizzino, A.; Kuszynski, C.; Ruff, E., et al. Production and utilization of growth factors related to fibroblast growth factor by embryonal carcinoma cells and their differentiated cells. Dev. Biol. 129:61–71; 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Rotwein, P.; Burgess, S. K.; Milbrandt, J. D., et al. Differential expression of insulin-like growth factor genes in rat central nervous system. Proc. Natl. Acad. Sci. USA 85:265–269; 1988.

    Article  PubMed  CAS  Google Scholar 

  34. Sara, V. R.; Carlsson-Skwirut, C.; Andersson, C., et al. Characterization of somatomedins from fetal brain: identification of a variant form of insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 83:4904–4907; 1986.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, E. P.; Sadler, T. W.; D’Ercole, A. J. Somatomedins/insulin-like growth factors, their receptors and binding proteins are present during mouse embryogenesis. Development 101:73–82; 1987.

    PubMed  CAS  Google Scholar 

  36. Sporn, M. B.; Roberts, A. B. Autocrine growth factors and cancer. Nature 313:745–747; 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Tainsky, M. A.; Cooper, C. S.; Giovanella, B. C., et al. An activatedras N gene: detected in late but not early passage human PA1 teratocarcinoma cells. Science 225:643–645; 1984.

    Article  PubMed  CAS  Google Scholar 

  38. Tainsky, M. A.; Shamanski, F.; Blair, D., et al. Causal role for an activated N-ras oncogene in the induction of tumorigenicity acquired by a human cell line. Cancer Res. 47:3235–3238; 1987.

    PubMed  CAS  Google Scholar 

  39. Tomooka, Y.; Kawakatsu, H.; Jing, N., et al. Tenascin production and characterization of newly cloned cell lines from GR and C3H mouse mammary tumors. Nagoya, Japan: Proceedings of the Japanese Cancer Association; 1989:160.

  40. Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.

    Article  PubMed  CAS  Google Scholar 

  41. Van Zoelen, E. J. J.; Ward-Van Oostwaard, T. M. J.; Nieuwland, R., et al. Identification and characterization of polypeptide growth factors secreted by murine embryonal carcinoma cells. Dev. Biol. 133:272–283; 1989.

    Article  PubMed  Google Scholar 

  42. Weima, S. M.; Stet, L. H.; Van Rooijen, M. A., et al. Human teratocarcinoma cells express functional insulin-like growth factor I receptors. Exp. Cell Res. 184:427–439; 1989.

    Article  PubMed  CAS  Google Scholar 

  43. Weller, A.; Meek, J.; Adamson, E. D. Preparation and properties of monoclonal and polyclonal antibodies to mouse epidermal growth factor (EGF) receptors: evidence for cryptic EGF receptors in embryonal carcinoma cells. Development 100:351–363; 1987.

    PubMed  CAS  Google Scholar 

  44. Zeuthen, J.; Norgaard, J. O. R.; Avner, P., et al. Characterization of a human ovarian teratocarcinoma-derived cell line. Int. J. Cancer 25:19–32; 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, N., Shiurba, R., Kitani, H. et al. Secretion of polypeptides related to epidermal growth factor and insulinlike growth factor I by a human teratocarcinoma cell line. In Vitro Cell Dev Biol - Animal 27, 864–872 (1991). https://doi.org/10.1007/BF02630989

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630989

Key words

Navigation