Skip to main content
Log in

Immunomagnetic separation, primary culture, and characterization of cortical thick ascending limb plus distal convoluted tubule cells from mouse kidney

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Renal cortical thick ascending limbs of Henle’s loop (CAL) and distal convoluted tubules (DCT) represent sites at which much of the final regulation of urinary ionic composition, particularly that of calcium, is accomplished in both humans and in rodents. We sought in the present work to develop an efficient means for isolating parathyroid hormone (PTH)-sensitive cells from these nephron segments and to grow them in primary culture. [CAL+DCT] cells were isolated from mouse kidney using an antiserum against the Tamm-Horsfall glycoprotein which, in the renal cortex, is produced exclusively by these cells. A second antibody conjugated to coated ferrous particles permitted magnetic separation of [CAL+DCT] cells from Tamm-Horsfall negative renal cortical cells. Approximately 3 × 106 cells per kidney with a trypan blue exclusion greater than 94% were isolated by these procedures. Experiments were performed to characterize the cells after 7 to 10 days in primary culture. PTH and isoproterenol, but neither calcitonin nor vasopressin, stimulated cyclic AMP (cAMP) formation in [CAL+DCT] cells, consistent with the pattern of hormone-activated cAMP synthesis found in freshly isolated CAL and DCT segments. Alkaline phosphatase, an enzyme present dominantly in proximal tubule brush border membranes, was virtually absent from [CAL+DCT] cells but was present in Tamm-Horsfall negative cells. Similarly, Na-glucose cotransport was absent in [CAL+DCT] cells but present in Tamm-Horsfall negative renal cortical cells. Finally, transport-related oxygen consumption in [CAL+DCT] cells was blocked by bumetanide and by chlorothiazide, diuretics that inhibit sodium transport in CAL and DCT nephron segments. These results demonstrate that PTH-sensitive [CAL+DCT] cells can be isolated in relatively high yield and viability and grown in cell culture. Primary cultures of these cells exhibit a phenotype appropriate to their site of origin in the nephron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, M. L.; Nakao, A.; Sonnenburg, W. K., et al. Immunodissection of cortical and medullary thick ascending limb cells from rabbit kidney. Am. J. Physiol. 255:F704-F710; 1988.

    PubMed  CAS  Google Scholar 

  2. Bachmann, S.; Koeppen-Hagemann, I.; Kriz, W. Ultrastructural localization of Tamm-Horsfall glycoprotein (THP) in rat kidney as revealed by protein A-gold immunocytochemistry. Histochemistry 83:531–538; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Bachmann, S.; Metzger, R.; Bunnenmann, B. Tamm-Horsfall protein-mRNA synthesis is localized to the thick ascending limb of Henle’s loop in rat kidney. Histochemistry 94:517–523; 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Bacskai, B. J.; Friedman, P. A. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature 347:388–391; 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Bailly, C.; Imbert-Teboul, M.; Roinel, N., et al. Isoproterenol increases Ca, Mg, and NaCl reabsorption in mouse thick ascending limb. Am. J. Physiol. 258:F1224-F1231; 1990.

    PubMed  CAS  Google Scholar 

  6. Bourdeau, J. E. Renal handling of calcium. In: Brenner, B. M.; Stein, J. H., eds. Divalent ion homeostasis. New York: Churchill Livingstone, 1983:1–31.

    Google Scholar 

  7. Bourdeau, J. E.; Burg, M. B. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle’s loop. Am. J. Physiol. 239:F121-F126; 1980.

    PubMed  CAS  Google Scholar 

  8. Brunette, M. G.; Chabardes, D.; Imbert-Teboul, M., et al. Hormonesensitive adenylate cyclase along the nephron of genetically hypophosphatemic mice. Kidney Int. 15:357–369; 1979.

    PubMed  CAS  Google Scholar 

  9. Brunette, M. G.; Chan, M.; Lebrun, M. Phosphatase activity along the nephron of mice with hypophosphatemic vitamin-D resistant rickets. Kidney Int. 20:181–187; 1981.

    PubMed  CAS  Google Scholar 

  10. Chabardès, D.; Gagnon-Brunette, M.; Imbert-Teboul, M., et al. Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J. Clin. Invest. 65:439–448; 1980.

    PubMed  Google Scholar 

  11. Chabardès, D.; Imbert-Teboul, M.; Gagnon-Brunette, M., et al. Different hormonal target sites along the mouse and rabbit nephrons. In: Guder, W. G., ed. Biochemical nephrology. Bern: Hans Huber, 1978:447–454.

    Google Scholar 

  12. Chamberlin, M. E.; Mandel, L. J. Substrate support of medullary thick ascending limb oxygen consumption. Am. J. Physiol. 251:F758-F763; 1986.

    PubMed  CAS  Google Scholar 

  13. Costanzo, L. S. Mechanism of action of thiazide diuretics. Semin. Nephrol. 8:234–241; 1988.

    PubMed  CAS  Google Scholar 

  14. Costanzo, L. S.; Windhager, E. E. Effects of PTH, ADH, and cyclic AMP on distal tubular Ca and Na reabsorption. Am. J. Physiol. 239:F478-F485; 1980.

    PubMed  CAS  Google Scholar 

  15. Di Stefano, A.; Wittner, M.; Nitschke, R., et al. Effects of glucagon on Na+, Cl, K+, Mg2+, and Ca2+ transports in cortical and medullary thick ascending limbs of mouse kidney. Pflugers Arch. 414:640–646; 1989.

    Article  PubMed  Google Scholar 

  16. Doucet, A.; Barlet-Bas, C.; Siaume-Perez, S., et al. Gluco-and mineralocorticoids control adenylate cyclase in specific nephron segments. Am. J. Physiol. 258:F812-F820; 1990.

    PubMed  CAS  Google Scholar 

  17. Elalouf, J. M.; Roinel, N.; de Rouffignac, C. ADH-like effects of calcitonin on electrolyte transport by Henle’s loop of rat kidney. Am. J. Physiol. 246:F213-F220; 1984.

    PubMed  CAS  Google Scholar 

  18. Fasth, A.; Hoyer, J. R.; Seiler, M. W. Renal tubular immune complex formation in mice immunized with Tamm-Horsfall protein. Am. J. Pathol. 125:555–562; 1986.

    PubMed  CAS  Google Scholar 

  19. Friedman, P. A. Basal and hormone-activated calcium absorption in mouse renal thick ascending limbs. Am. J. Physiol. 254:F62-F70; 1988.

    PubMed  CAS  Google Scholar 

  20. Friedman, P. A. Renal calcium transport: sites and insights. News Physiol. Sci. 3:17–21; 1988.

    Google Scholar 

  21. Friedman, P. A. Biochemistry and pharmacology of diuretics. Semin. Nephrol. 8:198–212; 1988.

    PubMed  CAS  Google Scholar 

  22. Friedman, P. A.; Andreoli, T. E. CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na+/H+ and Cl-/HCO3- exchange in apical plasma membranes. J. Gen. Physiol. 80:683–711; 1982.

    Article  PubMed  CAS  Google Scholar 

  23. Friedman, P. A.; Hebert, S. C. Mechanisms of action of diuretics. In: Brenner, B. M.; Stein, J. H., eds. Body fluid homeostasis. New York: Churchill Livingstone, 1987:377–407.

    Google Scholar 

  24. Gesek, F. A.; Cragoe, E. J., Jr.; Strandhoy, J. W. Synergisticalpha-1 andalpha-2 adrenergic stimulation of rat proximal nephron Na+/H+ exchange. J. Pharmacol. Exp. Ther. 249:694–700; 1989.

    PubMed  CAS  Google Scholar 

  25. Gesek, F. A.; Strandhoy, J. W.Alpha adrenoceptor agonist stimulation of oxygen consumption in rat proximal and distal nephrons. J. Pharmacol. Exp. Ther. 249:529–534; 1989.

    PubMed  CAS  Google Scholar 

  26. Good, D. W. Sodium-dependent bicarbonate absorption by cortical ascending limb of rat kidney. Am. J. Physiol. 248:F821-F829; 1985.

    PubMed  CAS  Google Scholar 

  27. Greger, R. Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol. Rev. 65:760–797; 1985.

    PubMed  CAS  Google Scholar 

  28. Greger, R.; Velazquez, H. The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism. Kidney Int. 31:590–596; 1987.

    PubMed  CAS  Google Scholar 

  29. Grossman, E. B.; Hebert, S. C. Modulation of Na-K-ATPase activity in the mouse medullary thick ascending limb of Henle. Effects of mineralocorticoids and sodium. J. Clin. Invest. 81:885–892; 1988.

    PubMed  CAS  Google Scholar 

  30. Haas, M. Properties and diversity of (Na-K-Cl) cotransporters. Annu. Rev. Physiol. 51:443–457; 1989.

    Article  PubMed  CAS  Google Scholar 

  31. Hall, D. A.; Varney, D. M. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle’s loop. J. Clin. Invest. 66:792–802; 1980.

    PubMed  CAS  Google Scholar 

  32. Handler, J. S. Use of cultured epithelia to study transport and its regulation. J. Exp. Biol. 106:55–69; 1983.

    PubMed  CAS  Google Scholar 

  33. Hebert, S. C.; Andreoli, T. E. Control of NaCl transport in the thick ascending limb. Am. J. Physiol. 246:F745-F756; 1984.

    PubMed  CAS  Google Scholar 

  34. Hebert, S. C.; Culpepper, R. M.; Andreoli, T. E. NaCl transport in mouse medullary thick ascending limbs. I Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am. J. Physiol. 241:F412-F431; 1981.

    PubMed  CAS  Google Scholar 

  35. Hoyer, J. R.; Seiler, M. W. Pathophysiology of Tamm-Horsfall protein. Kidney Int. 16:279–289; 1979.

    PubMed  CAS  Google Scholar 

  36. Hoyer, J. R.; Sisson, S. P.; Vernier, R. L. Tamm-Horsfall glycoprotein. Ultrastructural immunoperoxidase localization in rat kidney. Lab. Invest. 41:168–173; 1979.

    PubMed  CAS  Google Scholar 

  37. Kaissling, B.; Kriz, W. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56:1–123; 1979.

    PubMed  CAS  Google Scholar 

  38. Kikeri, D.; Azar, S.; Sun, A., et al. Na+-H+ antiporter and Na+-(HCO3 )n symporter regulate intracellular pH in mouse medullary thick limbs of Henle. Am. J. Physiol. 258:F445-F456; 1990.

    PubMed  CAS  Google Scholar 

  39. Kriz, W.; Bankir, L. A standard nomenclature for the structures of the kidney. Am. J. Physiol. 254:F1-F8; 1988.

    Google Scholar 

  40. Mandel, L.; Balaban, R. S. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am. J. Physiol. 240:F357-F371; 1981.

    PubMed  CAS  Google Scholar 

  41. Mandel, L. J. Primary active sodium transport, oxygen consumption and ATP: coupling and regulation. Kidney Int. 29:3–9; 1986.

    PubMed  CAS  Google Scholar 

  42. Morel, F.; Doucet, A. Hormonal control of kidney functions at the cell level. Physiol. Rev. 66:377–468; 1986.

    PubMed  CAS  Google Scholar 

  43. Morel, F.; Imbert-Teboul, M.; Chabardès, D. Distribution of hormonedependent adenylate cyclase in the nephron and its physiological significance. Ann. Rev. Physiol. 43:569–581; 1981.

    Article  CAS  Google Scholar 

  44. Pizzonia, J. H.; Mills, J. W.; Zurlo, J., et al. Molecular and immunocytochemical localization of Tamm-Horsfall glycoprotein. Kidney Int. 37:427; 1990.

    Google Scholar 

  45. Pizzonia, J. H.; Saltzberg, S. N.; Hebert, S. C., et al. Comparative localization of Tamm-Horsfall glycoprotein by immunohistochemical and northern blot analyses. Kidney Int. 1990.

  46. Ramachandran, C.; Brunette, M. G. The renal Na+/Ca2+ exchange system is located exclusively in the distal tubule. Biochem. J. 257:259–264; 1989.

    PubMed  CAS  Google Scholar 

  47. Reeves, W. B.; Molony, D. A. The physiology of loop diuretic action. Seminars Nephrol. 8:225–233; 1988.

    CAS  Google Scholar 

  48. Schafer, J. A.; Williams, J. C., Jr. Transport of metabolic substrates by the proximal nephron. Ann. Rev. Physiol. 47:103–125; 1985.

    Article  CAS  Google Scholar 

  49. Sikri, K.; Foster, C.; MacHugh, N., et al. Localization of Tamm-Horsfall glycoprotein in the human kidney using immunofluorescence and immunoelectron microscopical techniques. J. Anat. 132:597–605; 1981.

    PubMed  CAS  Google Scholar 

  50. Smith, W. L.; Garcia-Perez, A. Immunodissection: use of monoclonal antibodies to isolate specific types of renal cells. Am. J. Physiol. 248:F1-F7; 1985.

    PubMed  CAS  Google Scholar 

  51. Spielman, W. S.; Sonnenburg, W. K.; Allen, M. L., et al. Immunodissection and culture of rabbit cortical collecting tubule cells. Am. J. Physiol. 251:F348-F357; 1986.

    PubMed  CAS  Google Scholar 

  52. Stanton, B. A. Electroneutral NaCl transport by distal tubule: evidence for Na+/H+-Cl/HCO3−-exchange. Am. J. Physiol. 254:F80-F86; 1988.

    PubMed  CAS  Google Scholar 

  53. Stokes, J. B. Sodium chloride absorption by the urinary bladder of the winter flounder: A thiazide-sensitive, electrically neutral system. J. Clin. Invest. 74:7–16; 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Experimental work reported here was supported by grants from the National Institutes of Health, Bethesda, MD GM34399, American Heart Association (grant-in-aid 88-0721), and the Hitchcock Foundation. J. H. Pizzonia was supported by a Ford Foundation Fellowship and this work constitutes partial fulfillment of the requirements for a doctoral degree at Dartmouth College. B. J. Bacskai was supported by a Pharmaceutical Manufacturers Association Foundation Advanced Predoctoral Fellowship. P. A. Friedman was an Established Investigator of the American Heart Association during the tenure of these studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pizzonia, J.H., Gesek, F.A., Kennedy, S.M. et al. Immunomagnetic separation, primary culture, and characterization of cortical thick ascending limb plus distal convoluted tubule cells from mouse kidney. In Vitro Cell Dev Biol - Animal 27, 409–416 (1991). https://doi.org/10.1007/BF02630961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630961

Key words

Navigation