Skip to main content
Log in

A cobblestone cell isolated from the human omentum: the mesothelial cell; isolation, identification, and growth characteristics

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Normal human mesothelial cells (NHMC) were isolated from pieces of human omentum. The cell yield was approximately one million cells per square centimeter omentum. The mesothelial cells were identified by their positive staining with monoclonal antibodies against cytokeratins 6 and 18. Transmission electronmicroscopy of cultured NHMC revealed many microvilli on the apical surface and many mitochondria and pinocytotic vesicles in the cytoplasm, indicating active transmembrane transport. Growth of NHMC was directly related to the concentration of human serum or of fetal bovine serum in the growth medium. Addition of epidermal growth factor with or without hydrocortisone resulted in a significant increase of NHMC growth; when endothelial cell growth factor, insulin, or hydrocortisone were added no such increase was observed. Seeding NHMC at densities less than 3000/cm2 did not result in monolayer formation. The mesothelial cells were serially passed in growth medium M199 with added 10% fetal bovine serum up to 7 passages. However, after Passage 4 the cells changed into giant cells with an irregular pattern, and a lack of intracellular cytokeratin expression was observed for most of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anders, E.; Alles, J. U.; Delvos, U., et al. Microvascular endothelial cells from human omental tissue modified method for long term cultivation and new aspects of characterization. Microvasc. Res. 34:239–249; 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Baradi, A. F.; Hope, J. Observations on ultrastructure of rabbit mesothelium. Exp. Cell. Res. 34:33–44; 1964.

    Article  PubMed  CAS  Google Scholar 

  3. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Barnes, D.; Sato, G. Method for growth of cultured cells in serum-free medium. Anal. Biochem. 102:255–270; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Baumgartner, H. R. The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc. Res. 5:167–179; 1973.

    Article  PubMed  CAS  Google Scholar 

  6. Becklake, M. R. Exposure to asbestos and human disease. N. Eng. J. Med. 306:1480–1482; 1982.

    Article  CAS  Google Scholar 

  7. Boen, S. T.; Mulinari, A. S.; Dillard, D. H., et al. Periodic peritoneal dialysis in the management of chronic uremia. Trans. Am. Soc. Artif. Intern. Organs 8:256–262; 1962.

    Google Scholar 

  8. Bronswijk, van H.; Verbrugh, H. A.; Bos, H. J., et al. Cytotoxic effects of commercial continuous ambulatory peritoneal dialysis (CAPD) fluids and of bacterial exoproducts on human mesothelial cells in vitro. Peritoneal Dialysis Int. 9:197–202; 1989.

    Google Scholar 

  9. Clarke, J. M. F.; Pittilo, R. M.; Machin, S. J., et al. A study of the possible role of mesothelium as a surface for flowing blood. Trombos Haemostas. 51:57–60; 1984.

    CAS  Google Scholar 

  10. Clarke, J. M. F.; Pittilo, R. M.; Nicholson, L. J., et al. Seeding Dacron arterial prostheses with peritoneal mesothelial cells: a preliminary morphological study. Br. J. Surg. 71:492–494; 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Coene, M. C.; Solheid, C.; Claes, M., et al. Prostaglandin production by cultured mesothelial cells. Arch. Int. Pharmacodyn. 249:316–318; 1981.

    PubMed  CAS  Google Scholar 

  12. Connell, N. D.; Rheinwald, J. G. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell 34:245–253; 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Cunningham, R. S. The physiology of the serous membranes. Physiol. Rev. 6:242–247; 1926.

    Google Scholar 

  14. Dobbie, J. W. From philosopher to fish: the comparative anatomy of the peritoneal cavity as an excretory organ and its significance for peritoneal dialysis in man. Peritoneal Dialysis Int. 8:3–6; 1988.

    Google Scholar 

  15. Fasol, R.; Zilla, P.; Deutsch, M., et al. Endothelial cell seeding: experience and first clinical results in Vienna. In: Zilla, P.; Fasol, R.; Deutsch, M., eds. Endothelialization of vascular grafts. Basel: Karger; 1987:233–244.

    Google Scholar 

  16. Gerwin, B. I.; Lechner, J. F.; Reddel, R. R., et al. Comparison of production of transforming growth factor 23 and platelet derived growth factor by normal human mesothelial and mesothelioma cell lines. Cancer Res. 47:6180–6184; 1987.

    PubMed  CAS  Google Scholar 

  17. Gilles, R. J.; Didier, N.; Denton, M. Determination of cell number in monolayer cultures. Anal. Biochem. 159:109–113; 1986.

    Article  Google Scholar 

  18. Gordon, P. B.; Sussman, I. I.; Hatcher, V. B. Long-term culture of human endothelial cells. In Vitro 19:661–671; 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Herman, A. G.; Claes, M.; Moncada, S., et al. Biosynthesis of prostacyclin and 12L-hydroxy-5,8,10,14-iecosatetraenoic acid (HETE) by pericardium, pleura, peritoneum and aorta of the rabbit. Prostaglandines 18:439–452; 1979.

    Article  CAS  Google Scholar 

  20. Hesseldahl, H.; Larsen, J. F. Ultrastructure of human yolk sac: endoderm, mesenchyme, tubules and mesothelium. Am. J. Anat. 126:315–336; 1969.

    Article  PubMed  CAS  Google Scholar 

  21. Hinsbergh, V. W. M.; Binnema, D.; Scheffer, M. A., et al. Production of plasminogen activators and inhibitor by serial propagated endothelial cells from adult human blood vessels. Arteriosclerosis 7:389–400; 1987.

    PubMed  Google Scholar 

  22. Holmes, R. Preparation from human serum of an alpha-one protein which induces the immediate growth of unadapted cell in vitro. J. Cell Biol. 32:297–308; 1967.

    Article  PubMed  CAS  Google Scholar 

  23. Jaffe, E. A.; Nachman, R. L.; Becker, C. G., et al. Culture of human endothelial cells derived from umbilical cord veins. Identification of morphology and immunologic criteria. J. Clin. Invest. 52:2745–2756; 1973.

    PubMed  CAS  Google Scholar 

  24. Ke, Y.; Reddel, R. R.; Gerwin, B. I., et al. Establishment of a human in vitro mesothelial cell model system for investigating mechanism of asbestos-induced mesothelioma. Am. J. Pathol. 134:979–991; 1989.

    PubMed  CAS  Google Scholar 

  25. Laveck, M. A.; Somers, A. N. A.; Moore, L. L., et al. Dissimilar peptide growth factors can induce normal human mesothelial cell multiplication. In Vitro Cell. Dev. Biol. 24:1077–1084; 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Lechner, J. F.; LaVeck, M. A.; Gerwin, B. I., et al. Differential responses to growth factors by normal human mesothelial cultures from individual donors. J. Cell. Physiol. 139:295–300; 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Maciag, T.; Cerundolo, J.; Ilsley, S., et al. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl. Acad. Sci. USA 76:5674–5678; 1979.

    Article  PubMed  CAS  Google Scholar 

  28. Maciag, T.; Hoover, G. A.; Stemerman, M. B., et al. Serial propagation of endothelial cells in vitro. J. Cell Biol. 91:420–426; 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Odor, D. L. Observations of the rat mesothelium with the electronic and phase microscopes. Am. J. Anat. 95:433–465; 1954.

    Article  PubMed  CAS  Google Scholar 

  30. Plow, E. F.; Ginsberg, M. H. Specific and saturable binding of plasma fibronectin to thrombin stimulated human platelets. J. Biol. Chem. 256:9477–9482; 1981.

    PubMed  CAS  Google Scholar 

  31. Pronk, A.; Bouter, P. K.; Hoynck van Papendrecht, A. A. G. M., et al. Seeding vascular prostheses with mesothelial cells: an alternative to endothelial cell seeding. Eur. Surg. Res. 20:3; 1988.

    Google Scholar 

  32. Ramalanjaona, G.; Kempczinski, R. F.; Rosenman, J. E., et al. The effect of fibrin coating on endothelial cell kinetics in polytetrafluoroethylene grafts. J. Vasc. Surg. 3:264–272; 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Risberg, B.; Ortenwall, P.; Wadenvik, H., et al. Endothelial cell seeding: experience and first clinical results in Göteborg. In: Zilla, P. P.; Fasol, R. D.; Deutsch, M., eds. Endotheliazation of vascular grafts. Basel: Karger; 1986:225–232.

    Google Scholar 

  34. Rosen, E. M.; Mueller, S. N.; Noveral, J. P., et al. Proliferative characteristics of clonal endothelial cell strains. J. Cell. Physiol. 107:123–137; 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Simionescu, M.; Simionescu, N. Organization of cell junctions in the peritoneal mesothelium. J. Cell. Biol. 74:98–110; 1977.

    Article  PubMed  CAS  Google Scholar 

  36. Stahel, R. A.; O’Hara, C. J.; Waibel, R., et al. Monoclonal antibodies against mesothelial membrane antigen discriminate between malignant mesothelioma and lung adenocarcinoma. Int. J. Cancer 41:218–223; 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Steinhauer, H. B.; Günter, B.; Schollmeyer, P. Stimulation of peritoneal synthesis of vasoactive prostaglandins during peritonitis in patients on continuous abmulatory peritoneal dialysis. Eur. J. Clin. Invest. 15:1–5; 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Sterpetti, A. V.; Hunter, W. J.; Schultz, R. D., et al. Seeding with endothelial cells derived from the microvessels of the omentum and from the jugular vein: a comparative study. J. Vasc. Surg. 7:677–684; 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Takahashi, K.; Goto, T.; Mukai, K., et al. Cobblestone monolayer cells from human omental adipose tissue are possibly mesothelial, not endothelial. In Vitro Cell. Dev. Biol. 25:109–111; 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Thompson, J. N.; Paterson-Brown, S.; Harbourne, T., et al. Reduced human peritoneal activity; possible mechanism of adhesion formation. Br. J. Surg. 76:382–384; 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Thompson, J. N.; Paterson-Brown, S.; Harbourne, T., et al. Reduced human peritoneal plasminogen activating activity: possible mechanism of adhesion formation. Br. J. Surg. 76:382–384; 1989.

    Article  PubMed  CAS  Google Scholar 

  42. Wu, Y. J.; Parker, L. M.; Binder, N. E., et al. The mesothelial keratins: a new family of cytoskeletal proteins identified in cultured mesothelial cells and non-keratinizing epithelia.

  43. Zilla, P.; Fasol, R.; Kadletz, M., et al. In vitro lining of PTFE grafts with human saphenous vein endothelial cells. In: Zilla, P.; Fasol, R.; Deutsch, M., eds. Endothelization of vascular grafts. Basel: Karger; 1987:195–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pronk, A., Leguit, P., van Papendrecht, A.A.G.M.H. et al. A cobblestone cell isolated from the human omentum: the mesothelial cell; isolation, identification, and growth characteristics. In Vitro Cell Dev Biol - Animal 29, 127–134 (1993). https://doi.org/10.1007/BF02630943

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630943

Key words

Navigation