Skip to main content
Log in

Characterization of a developmentally regulated mouse embryonic antigen

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A mammalian embryonic cell surface glycoprotein (ESGp), whose expression and biochemical structure seem to be developmentally regulated, has been isolated and characterized. The molecule expressed in two cell through morula stage mouse embryos has a molecular weight, by electrophoretic analyses, of 90 kDa. At the blastocyst stage, however, the molecule migrates as a broad, heterogeneous band ranging from 90 to 110 kDa. Evidence obtained from studies of embryonal carcinoma (EC) cells indicates that this band is actually a composite of three distinct molecules (molecular weight 90, 95, and 105 to 110 kDa), each of which is synthesized uniquely by one of the different cell types of the blastocyst: the embryonic ectoderm and visceral and parietal endoderms, respectively. A survey of various mouse tissues and cell lines has revealed that undifferentiated cells express the low molecular weight form (90 kDa) characteristic of embryonic ectoderm, whereas differentiated cells and adult tissues express the high molecular weight form (110 kDa) characteristic of parietal endoderm. Only the EC visceral endoderm cell analogues have been shown to express the intermediate molecule (95 kDa). In embryos, the antigen is uniformly distributed over the cell surface during early cleavage stages (two to eight cell); just before compaction, however, it seems to redistribute and becomes polarized at the outside exposed edges of blastomeres. In cultured EC cells, ESGp is found only in areas of cell-to-cell contact; free-standing surfaces of cells are negative for expression. It is possible, therefore, that ESGp may be involved in the intercellular adhesion of both EC cells and compacting embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamson, E. D.; Evans, M. S.; Magrane, G. G. Biochemical markers of the progress of differentiation in cloned teratocarcinoma cell lines. Eur. J. Biochem. 79:607–615; 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Bernstine, E. C.; Hooper, N. L.; Grandchamp, S., et al. Alkaline phosphatase activity in mouse teratoma. Proc. Natl. Acad. Sci. USA 70:3899–3903; 1973.

    Article  CAS  Google Scholar 

  3. Cheng, C. C.; Sege, K.; Alton, A. K., et al. Characterization of an antigen present on testicular cells and preimplantation embryos whose expression is modified by t12 haplotype. J. Immunogenet. 10:465–485; 1983.

    Article  PubMed  CAS  Google Scholar 

  4. Cossu, G.; Warren, L. Lactosaminoglycans and heparin sulfate are covalently bound to fibronectins synthesized by mouse stem teratocarcinoma cells. J. Biol. Chem. 258:5603–5607; 1983.

    PubMed  CAS  Google Scholar 

  5. D’Eustachio, P.; Owens, G.; Edelman, G. M., et al. Chromosomal location of the gene encoding the neural cell adhesion molecule (N-CAM) in the mouse. Proc. Natl. Acad. Sci. USA 82:7631–7635; 1988.

    Article  Google Scholar 

  6. Damsky, C. H.; Richa, J.; Solter, D., et al. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell 34:455–466; 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Dustin, M. L.; Rothlein, R.; Bhan, A. K., et al. Induction by IL-1 and interferon, tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-1). J. Immunol. 137:245–254; 1986.

    PubMed  CAS  Google Scholar 

  8. Edelman, G. M. Cell adhesion molecules in the regulation of animal form and tissue pattern. Ann. Rev. Cell Biol. 2:81–116; 1986.

    PubMed  CAS  Google Scholar 

  9. Edelman, G. M.; Gallin, W. J.; Delouvee, A., et al. Early epochal maps of two different cell adhesion molecules. Proc. Natl. Acad. Sci. USA 80:4384–4388; 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Edwards, R. G.; Gates, A. H. Timing of the stages of the maturation divisions, ovulation, fertilization, and the first cleavage of eggs of adult mice treated with gonadotrophins. J. Endocrinol. 18:292–304; 1959.

    Article  PubMed  CAS  Google Scholar 

  11. Friedlander, D. R.; Brackenbury, R.; Edelman, G. M. Conversion of embryonic forms of N-CAMin vitro results fromde novo synthesis of adult forms. J. Cell Biol. 101:412–419; 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Hyafil, F.; Babinet, C.; Jacob, F. Cell-cell interactions in early embryogenesis: a molecular approach to the role of calcium. Cell 26:447–454; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Hyafil, F.; Morello, D.; Babinet, C., et al. A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell 21:927–934; 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685; 1970.

    Article  Google Scholar 

  15. Lehman, J. M.; Speers, W. C.; Swartzendrubner, D. E., et al. Neoplastic differentiation: characteristics of cell lines derived from a murine teratocarcinoma. J. Cell. Physiol. 84:13–28; 1974.

    Article  PubMed  CAS  Google Scholar 

  16. Marlin, S. D.; Springer, T. A. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51:81–116; 1987.

    Article  Google Scholar 

  17. Martin, G. R. Teratocarcinomas and mammalian embryogenesis. Science 209:768–776; 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Martin, G. R.; Evans, M. J. The formation of embryoid bodies in vitro by homogeneous embryonal carcinoma cell cultures derived from isolated single cells. In: Sherman, M. I.; Solter, D., eds. Teratomas and differentiation. New York: Academic Press; 1975:169–187.

    Google Scholar 

  19. McCormick, P. J.; Babiarz, B. Expression of a glucose-regulated cell surface protein in early mouse embryos. Dev. Biol. 105:530–534; 1984.

    Article  PubMed  CAS  Google Scholar 

  20. McCormick, P. J.; Millis, A. J. T.; Babiarz, B. Distribution of a 100K dalton glucose-regulated cell surface protein in mammalian cell cultures and sectioned tissues. Exp. Cell Res. 138:63–72; 1982.

    Article  PubMed  CAS  Google Scholar 

  21. McCormick, P. J.; Dimeo, A.; Neuner, E., et al. Characterization of the F9 antigen(s) isolated from teratocarcinoma cell culture medium. Cell Differ. 11:135–140; 1982.

    Article  PubMed  CAS  Google Scholar 

  22. McCormick, P. J.; Shin, H.-S. Analysis of a nontumorigenic embryonal carcinoma cell line. Exp. Cell. Res. 189:183–188; 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Muramatsu, T.; Gachelin, G.; Jacob, F. Characterization of glycopeptides isolated from membranes of F9 embryonal carcinoma cells. Biochim. Biophys. Acta 587:392–406; 1979.

    PubMed  CAS  Google Scholar 

  24. Muramatsu, T.; Gachelin, G.; Nicolas, J. F., et al. Carbohydrate structure and cell differentiation: unique properties of fucosyl-glycopeptides isolated from embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 75:2315–2319; 1978.

    Article  PubMed  CAS  Google Scholar 

  25. Sato, M.; Muramatsu, T.; Berger, E. G. Immunological detection of cell surface galactosyltransferase in preimplantation mouse embryos. Dev. Biol. 102:514–518; 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Shirayoshi, Y.; Hatta, K.; Hosoda, M., et al. Cadherin cell adhesion molecules with distinct binding specificities share a common structure. EMBO J. 5:2485–2488; 1986.

    PubMed  CAS  Google Scholar 

  27. Shur, B. D. Embryonal carcinoma cell adhesion: the role of surface galactosyltransferase and its 90 k lactosaminoglycan substrate. Dev. Biol. 99:360–372; 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Simmons, D.; Makgoba, M. W.; Seed, B. ICAM, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature 331:624–627; 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Solter, D.; Knowles, B. B. Monoclonal antibody defining a stage specific mouse embryonic antigen (SSEA-1). Proc. Natl. Acad. Sci. USA 75:5565–5569; 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Strickland, S. Mouse teratocarcinoma cells: prospects for the study of embryogenesis and neoplasia. Cell 24:277–278; 1981.

    Article  PubMed  CAS  Google Scholar 

  31. Strickland, S.; Mahdavi, V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15:393–403; 1978.

    Article  PubMed  CAS  Google Scholar 

  32. Takeichi, M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102:639–655; 1988.

    PubMed  CAS  Google Scholar 

  33. Yoshida-Noro, C.; Suzuki, N.; Takeichi, M. Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Dev. Biol. 101:19–37; 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grant R01 HD23402 from the National Institutes of Health, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, P.J. Characterization of a developmentally regulated mouse embryonic antigen. In Vitro Cell Dev Biol - Animal 27, 260–266 (1991). https://doi.org/10.1007/BF02630927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630927

Key words

Navigation