Skip to main content
Log in

Evaluation of the probability of spontaneous transfer of drug resistance between cells in culture

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Coculture of two different cell lines in monolayer or spheroids was used to investigate the spontaneous transfer of dominant genes determining drug resistance. MGH-U1 human bladder cancer cells (ouabain-sensitive, mitomycin C-resistant) were cocultured with UV-20 cells (a subline of Chinese hamster ovary cells which is ouabain-resistant and mitomycin C-sensitive). We investigated the possible transfer of mitomycin-C resistance from human to rodent cells by selection in both ouabain and mitomycin C. Regardless of coculture conditions, the frequency of surviving cells was at a similar level to that expected from studies of cell survival when cells were cultured alone. We found no evidence of spontaneous transfer of drug resistance between the two cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cadman, E.; Wong, D.; Liu, E. Drug resistance genes can be spontaneously transferred among malignant cells. In: Hall, T., ed. Cancer drug resistance. New York: Alan R. Liss, Inc.; 1986:11–20.

    Google Scholar 

  2. Chen, T. R.In situ detection of mycoplasma contamination of cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell. Res. 104:255–262; 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Clark, M. A.; Crenshaw, A. H., Jr.; Shay, J. W. Fusion of mammalian somatic cells with Polyethylene Glycol 400 MW. Tissue Cult. Manual 4:801–804; 1978.

    Article  Google Scholar 

  4. Cline, M. J.; Stang, H.; Mercola, K., et al. Gene transfer in intact animals. Nature 284:422–425; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Debenham, P. G.; Kartner, N.; Siminovitch, L., et al. DNA-mediated transfer of multiple drug resistance and plasma membrane glycoprotein expression. Mol. Cell. Biol. 2:881–889; 1982.

    PubMed  CAS  Google Scholar 

  6. Goldenberg, D. M.; Pavia, R. M.In vitro horizontal oncogenesis by a human tumor in nude mice. Proc. Natl. Acad. Sci. USA 79:2389–2392; 1982.

    Article  PubMed  CAS  Google Scholar 

  7. Gupta, V.; Rajaraman, S.; Gasdon, P., et al. Primary selectivity of contact-mediated intercellular communication in a metastatic mouse mammary tumor line. Cancer Res. 47:5194–5201; 1987.

    PubMed  CAS  Google Scholar 

  8. Ling, V. Genetic basis of drug resistance in mammalian cells. In: Bruchovsky, N.; Goldie, J. H., eds. Drug and hormone resistance in neoplasia, vol. 1. Boca Raton, FL: CRC Press; 1982.

    Google Scholar 

  9. Mariana, B. D.; Schimke, R. T. Gene amplification in a single cell cycle in Chinese hamster ovary cells. J. Biol. Chem. 259:1901–1910; 1984.

    Google Scholar 

  10. Miller, B. E.; Miller, F. R.; Heppner, G. H. Interactions between tumor subpopulations affecting their sensitivity to the antineoplastic agents cyclophosphamide and methotrexate. Cancer Res. 41:4378–4381; 1981.

    PubMed  CAS  Google Scholar 

  11. Miller, B. E.; Roi, L. D.; Howard, L. M., et al. Quantitative selectivity of contact-mediated intercellular communication in a metastatic mouse mammary tumour line. Cancer Res. 43:4102–4107; 1983.

    PubMed  CAS  Google Scholar 

  12. Milner, K. M.; Kawaguchi, T.; Uba, G. W., et al. Clonal drift of cell surface, melanogenic, and experimental metastatic properties ofin vivo selected, brain meninges-colonizing murine B12 melanoma. Cancer Res. 42:4631–4638; 1982.

    Google Scholar 

  13. Poste, G.; Doll, J.; Fidler, I. J. Interactions among clonal subpopulations affect stability of the metastatic phenotype in polyclonal populations of B16 melanoma cells. Proc. Natl. Acad. Sci. USA 78:6226–6230; 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Reddy, E. P.; Reynolds, R. K.; Santos, E., et al. A point mutation is responsible for the acquisition of transforming properties of the T24 human bladder carcinoma oncogene. Nature 300:149–152; 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Rubin, J. S.; Joyner, A. L.; Bernstein, A., et al. Molecular identification of a human DNA repair gene following DNA-mediated gene transfer. Nature 306:206–208; 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Schimke, R. T. Gene amplification, drug resistance, and cancer. Cancer Res. 44:1735–1742; 1984.

    PubMed  CAS  Google Scholar 

  17. Steel, G. G. Cell loss as a factor in the growth rate of human tumors. Eur. J. Cancer 3:381–387; 1967.

    PubMed  CAS  Google Scholar 

  18. Sutherland, R. M. Cell and environmental interactions in tumor microregions: the multicell spheroid model. Science 240:177–184; 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson, L. H.; Rubin, J. S.; Cleaver, J. E., et al. A screening method for isolating DNA repair-deficient mutants of CHO cells. Somatic Cell Genet. 6:391–405; 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Tofilon, P. J.; Buckley, N.; Deen, D. F. Effect of cell-cell interactions on drug sensitivity and growth of drug-sensitive and resistant tumor cells in spheroids. Science 226:862–864; 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luk, C.K., Tannock, I.F. Evaluation of the probability of spontaneous transfer of drug resistance between cells in culture. In Vitro Cell Dev Biol - Animal 27, 245–248 (1991). https://doi.org/10.1007/BF02630924

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630924

Key words

Navigation