Skip to main content
Log in

Stimulation of human arterial smooth muscle cell chondroitin sulfate proteoglycan synthesis by transforming growth factor-beta

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Human platelet-derived transforming growth factor-beta (TGF-beta) is a cell-type specific promotor of proteoglycan synthesis in human adult arterial cells. Cultured human adult arterial smooth muscle cells synthesized chondroitin sulfate, dermatan sulfate, and heparan sulfate proteoglycans, and the percent composition of these three proteoglycan subclasses varied to some extent from cell strain to cell strain. However, TGF-beta consistently stimulated the synthesis of chondroitin sulfate proteoglycan. Both chondroitin 4- and chondroitin 6-sulfate were stimulated by TGF-beta to the same extent. TGF-beta had no stimulatory effect on either class of [35S]sulfate-labeled proteoglycans which appeared in an approximately 1:1 and 2:1 ratio of heparan sulfate to dermatan sulfate of the medium and cell layers, respectively, of arterial endothelial cells. Human adult arterial endothelial cells synthesized little or no chondroitin sulfate proteoglycan. Pulse-chase labeling revealed that the appearance of smooth muscle cell proteoglycans into the medium over a 36-h period equaled the disappearance of labeled proteoglycans from the cell layer, independent of TGF-beta. Inhibitors of RNA synthesis blocked TGF-beta-stimulated proteoglycan synthesis in the smooth muscle cells. The incorporation of [35S]methionine into chondroitin sulfate proteoglycan core proteins was stimulated by TGF-beta. Taken together, the results presented indicate that TGF-beta stimulates chondroitin sulfate proteoglycan synthesis in human adult arterial smooth muscle cells by promoting the core protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, C. W. M.; Bayliss, O. B. Acid mucosubstances underlying lipid deposits in aging tendons and atherosclerotic arteries. Atherosclerosis 18:191–195; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Assoian, R. K.; Komoriya, A.; Meyers, C. A., et al. Transforming growth factor in human platelets. Identification of a major storage site, purification and characterization. J. Biol. Chem. 258:7155–7160; 1983.

    PubMed  CAS  Google Scholar 

  • Assoian, R. K.; Sporn, M. S. Type beta transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J. Cell Biol. 102:1217–1223; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Bassols, A.; Massague, J. Transforming growth factor beta regulate the expression and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. J. Biol. Chem. 263:3039–3045; 1988.

    PubMed  CAS  Google Scholar 

  • Berenson, G. S.; Radhakrishnamurthy, B.; Srinivasan, S. R., et al. Recent advances in molecular pathology. Carbohydrate protein macromolecules and arterial wall integrity-A role in atherosclerosis. Exp. Mol. Pathol. 41:267–287; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Burke, J.; Ross, R. Synthesis of connective tissue macromolecules by smooth muscle. In: International review of connective tissue research, vol. 8. New York: Academic Press; 1979:119–157.

    Google Scholar 

  • Camejo, G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv. Lipid Res. 19:1–53; 1982.

    PubMed  CAS  Google Scholar 

  • Camejo, G.; Olofsson, S-O.; Lopez, F., et al. Identification of apo B-100 segments mediating the interaction of low density lipoprotein with arterial proteoglycans. Arteriosclerosis 8:368–377; 1988.

    PubMed  CAS  Google Scholar 

  • Camejo, G.; Ponce, E.; Lopez, F., et al. Partial structure of the active moiety of a lipoprotein complexing proteoglycan from human aorta. Atherosclerosis 49:241–254; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Chang, Y.; Yanagishita, M.; Hascall, V. C., et al. Proteoglycans synthesized by smooth muscle cells derived from monkey aorta. J. Biol. Chem. 258:5679–5688; 1983.

    PubMed  CAS  Google Scholar 

  • Chen, J.-K.; Hoshi, H.; McClure, D. B., et al. Role of lipoproteins in growth of human adult arterial endothelial and smooth muscle cells in low lipoprotein-deficient serum. J. Cell. Physiol. 129:207–214; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J.-K.; Hoshi, H.; McKeehan, W. L. Transforming growth factor-beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc. Natl. Acad. Sci. USA 84:5287–5291; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Childs, C. B.; Proper, J. A.; Tucker, P. F., et al. Serum contains a platelet-derived transforming growth factor. Proc. Natl. Acad. Sci. USA 79:5312–5316; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, C. P.; Dietrich, S. M. C. Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffer. Anna. Biochem. 70:645–647; 1976.

    Article  CAS  Google Scholar 

  • Faggiotto, A.; Ross, R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 4:341–356; 1984.

    PubMed  CAS  Google Scholar 

  • Gordon, P. B.; Sussman, I. I.; Hatcher, V. B. Long-term culture of human endothelial cells. In Vitro 19:661–671; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Habuchi, H.; Kimata, K.; Suzuke, S. Changes in proteoglycan composition during development of rat skin. The occurrence in fetal skin of a chondroitin sulfate proteoglycan with high turnover rate. J. Biol. Chem. 261:1031–1040; 1986.

    PubMed  CAS  Google Scholar 

  • Hascall, J. R.; Kimura, J. H.; Hassel, V. C. Proteoglycan core protein families. Ann. Rev. Biochem. 55:539–567; 1986.

    Article  PubMed  Google Scholar 

  • Hollander, W. Unified concept on the role of acid mucopolysaccharides and connective tissue proteins in the accumulation of lipids. Exp. Mol. Pathol. 25:106–120; 1976.

    Article  PubMed  CAS  Google Scholar 

  • McKeehan, W. L.; Crabb, J. W. Isolation of multiple chromatographic forms of type one heparin-binding growth factors from bovine brain. Anal. Biochem. 164:563–569; 1987.

    Article  PubMed  CAS  Google Scholar 

  • McKeehan, W. L.; McKeehan, K. A. Calcium, magnesium and serum factors in multiplication of normal and transformed human lung fibroblasts. In Vitro 16:475–485; 1980.

    PubMed  CAS  Google Scholar 

  • Mozzicato, P.; Faris, B.; Hollander, W., et al. A method to evaluate the biosynthesis of glycosaminoglycans by the aorta of Cynomolgus monkey. Atherosclerosis 45:359–363; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Mourao, P. A. S.; Luz, M. R. M. P.; Borojevic, R. Sulfated proteoglycans synthesized by human smooth muscle cells isolated from different organs. Biochim. Biophys. Acta 881:321–329; 1986.

    PubMed  CAS  Google Scholar 

  • Oegema, T. R., Jr.; Hascall, V. C.; Eisenstein, R. Characterization of bovine aorta proteoglycan extracted with guanidine hydrochloride in the presence of protease inhibitors. J. Biol. Chem. 254:1312–1318; 1979.

    PubMed  CAS  Google Scholar 

  • Radhakrishnamurthy, B.; Srinivasan, S. R.; Vijayagopal, P., et al. In: Varma, R. S.; Varma, R., eds. Glycosaminoglycans and proteoglycans in pathological processes. Basal: Karger; 1982:231–251.

    Google Scholar 

  • Ross, R. Atherosclerosis—a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis 1:293–331; 1981.

    PubMed  CAS  Google Scholar 

  • Ross, R.; Glomset, J. A. Atherosclerosis and the arterial smooth muscle cells: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180:1332–1339; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Salisburry, B. G. J.; Falcone, D. J.; Minick, C. R. Insoluble lipoprotein-proteolgycan complexes enhance cholesteryl ester accumulation in macrophages. Am. J. pathol. 120:6–11; 1985.

    Google Scholar 

  • Salisburry, B. G. J.; Wagner, W. D. Isolation and preliminary characterization of proteoglycans dissociatively extracted from human aorta. J. Biol. Chem. 256:8050–8057; 1981.

    Google Scholar 

  • Srinivasan, S. R.; Dolan, P.; Radhakrishnamurthy, B., et al. Isolation of lipoprotein-acid mucopolysaccharide complexes from fatty streaks of human aortas. Atherosclerosis 16:95–104; 1972a.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, S. R.; Dolan, P.; Radhakrishnamurthy, B., et al. Isolation of lipoprotein-acid mucopolysaccharide complexes from fatty streaks of human aortas. Prep. Biochem. 2:83–91; 1972b.

    PubMed  CAS  Google Scholar 

  • Srinivasan, S. R.; Yost, K.; Radhakrishnamurthy, B., et al. Lipoprotein-hyaluronate association in human aorta fibrous plaque lesions. Atherosclerosis 36:25–37; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Steele, R. H.; Wagner, W. D.; Rowe, H. A., et al. Artery wall derived proteoglycan-plasma lipoprotein interaction: lipoprotein binding properties of extracted proteoglycans. Atherosclerosis 65:51–62; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Vijayagopal, P.; Srinivasan, S. R.; Radhakrishnamurthy, B., et al. Interactions of serum lipoproteins and a proteoglycan from bovine aorta. J. Biol. Chem. 256:8234–8241; 1981.

    PubMed  CAS  Google Scholar 

  • Wagner, W. D.; Rowe, H. A.; Conner, J. R. Biochemical characteristics of dissociatively isolated aortic proteoglycans and their binding capacity to hyaluronic acid. J. Biol. Chem. 258:11136–11142; 1983.

    PubMed  CAS  Google Scholar 

  • Walton, K. W.; Williamson, N. Histological and immunofluorescent studies in the evolution of the human atheromatous plaque. J. Atheroscler. Res. 8:599–624; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Wight, T. N. Vessel proteoglycans and thrombosis. In: Spaet, T. H., ed. Progress in hemostasis and thrombosis. New York: Grune and Stratton 5:1–39; 1980.

    Google Scholar 

  • Wight, T. N.; Lark, M. W.; Kinsella, M. G. Blood vessel proteoglycans. In: Wight, T. N.; Mecham, R. P., eds. Biology of extracellular matrix: biology of proteoglycans. Orlando, FL: Academic Press; 1987:267–300.

    Google Scholar 

  • Wight, T. N. Proteoglycans in pathological conditions: atherosclerosis. Fed. Proc. 44:381–385; 1985.

    PubMed  CAS  Google Scholar 

  • Wight, T. N. Cell biology of arterial proteoglycans. Arteriosclerosis 9:1–20; 1989.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by grants from the Public Health Service, U.S. Department of Health and Human Services, Washington, DC (CA 37589 and HL 33842), RJR Nabisco, Inc., and Chang Gung Biomedical Research Foundation (CMRP 291).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JK., Hoshi, H. & McKeehan, W.L. Stimulation of human arterial smooth muscle cell chondroitin sulfate proteoglycan synthesis by transforming growth factor-beta. In Vitro Cell Dev Biol - Animal 27, 6–12 (1991). https://doi.org/10.1007/BF02630888

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630888

Key words

Navigation