Skip to main content
Log in

Acute effects of 1,1,1-trichloroethane inhalation on the human central nervous system

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

The object of this study was to examine the immediate nervous effects of variable 1,1,1-trichloroethane (TCE) exposure combined with physical exercise. The effects on the quantitative electroencephalography (EEG), visual evoked potentials (VEP) and body sway were analyzed. Nine male volunteers were exposed to either a stable or a fluctuating exposure pattern with the same time-weighted average concentration of 200 ppm (8.1 μmol/l). In both cases, the subjects engaged in physical exercise during the exposures. Exercise alone induced an increase in the dominant alpha frequency in the EEG and, after an initial drop, an increase in the alpha percentage with a concomitant decrease in theta, whereas delta and beta bands remained unaffected. By contrast, exposure to TCE and exercise did not affect the alpha, theta or delta activities but induced changes in beta during the morning recordings at peak exposure to TCE. The body sway tended to decrease slightly during the fluctuating TCE exposure, and the later peaks in VEPs showed slight prolongations. Overall, no deleterious effects of exposure were noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CEFIC (1984) 1,1,1-Trichloroethane, in metal cleaning and other industrial solvents. Conseil Européen Des Fédérations De L'Industrie Chimique, Brussels

    Google Scholar 

  2. Docter RF, Naitoh P, Smith JC (1966) Electroencephalographic changes and vigilance behavior during experimentally induced intoxication with alcoholic subjects. Psychosom Med 28:605–615

    Google Scholar 

  3. Fink M (1978) Psychoactive drugs and the waking EEG 1966–1976 In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press New York, pp 691–698

    Google Scholar 

  4. Gamberale F, Hultengren M (1973) Methylchloroform, exposure. II. Psychophysiological functions. Work Environ Health 10:82–92.

    CAS  Google Scholar 

  5. Gamberale F, Annwall G, Hultengren M (1978) Exposure to xylene and ethylbenzene III. Effects on central nervous functions. Scand J Work Environ Health 4:204–211

    PubMed  CAS  Google Scholar 

  6. Halevy J, Pitlik S, Rosenfeld J (1980) 1,1,1-Trichloroethane intoxication: a case report with transient liver and renal damage. Review of the literature. Clin Toxicol 16:467–472

    Article  PubMed  CAS  Google Scholar 

  7. Hermann WM, Schaerer E (1986) Pharmaco-EEG: computer EEG analysis to describe the projection of drug effects on a functional cerebral level in humans. In: Lopes da Silva FH, Storm van Leeuwen W, Rémond A (eds) Clinical applications of computer analysis of EEG and other neurophysiological signals. (Handbook of electroenchephalography and clinical neurophysiology, vol 2) Elsevier, Amsterdam.

    Google Scholar 

  8. Herning RI, Jones RT, Hooker WD, Mendelson J, Blackwell L (1985) Cocaine increases EEG beta: a replication and extension of Hans Berger's historic experiments. Electroencephalogr Clin Neurophysiol 60:470–477

    Article  PubMed  CAS  Google Scholar 

  9. Iregren A, Akerstedt T, Anshelm B, Gamberale F (1986) Experimental exposure to toluene in combination with ethanol intake. Scand J Work Environ Health 12:128–136

    PubMed  CAS  Google Scholar 

  10. Kalant H (1970) Effects of ethanol on the nervous system. In: Tremolières J (ed) Alconols and derivatives. (International encyclopedia of pharmacology and therapeutics, sect 20, vol I) Pergamon Press, Oxford, pp 189–236

    Google Scholar 

  11. Konietzko H, Elster I, Bencsath A, Drysch K, Weichardt H (1975) EEG-Veränderungen unter definierter Trichloräthylen-Exposition. Int Arch Occup Environ Health 35:257–264

    Article  PubMed  CAS  Google Scholar 

  12. Kramer CG, Ott MG, Fulkerson JE, Hicks N, Imbus HR (1978) Health of workers exposed to 1,1,1-trichloroethane. A matchedpair study. Arch Environ Health 6:331–342

    Google Scholar 

  13. Mackay CJ, Campbell L, Samuel AM, Alderman KJ, Idzikowski C, Wilson HK, Gompertz D (1987) Behavioral changes during exposure to 1,1,1-trichloroethane: time-course and relationship to blood solvent levels. Am J Ind Med 11:223–239

    Article  PubMed  CAS  Google Scholar 

  14. Maroni M, Bulgheroni C, Cassitto MG, Merluzzi F, Gilioli R, Fao V (1977) A clinical, neurophysiological and behavioral study of female workers exposed to 1,1,1-trichloroethane. Scand J Work Environ Health 3:16–22

    PubMed  CAS  Google Scholar 

  15. Matousek M, Petersén I (1983) A method for assessing alertness fluctuations from EEG spectra. Electroencephalogr Clin Neurophysiol 55:108–113

    Article  PubMed  CAS  Google Scholar 

  16. McCarthy TB, Jones RD (1983) Industrial gassing poisonings due to trichloroethylene, perchloroethylene, and 1,1,1-trichloroethane, 1961–80. Br J Ind Med 40:450–455

    PubMed  CAS  Google Scholar 

  17. Obitz FW, Rhodes LE, Creel D (1977) Effect of alcohol and monetary reward on visually evoked potentials and reaction time. J Stud Alcohol 38:2057–2064

    PubMed  CAS  Google Scholar 

  18. Richards JE, Parmelee AH Jr, Beckwith L (1986) Spectral analysis of infant EEG and behavioral outcome at age five. Electroencephalogr Clin Neurophysiol 64:1–11

    Article  PubMed  CAS  Google Scholar 

  19. Riihimäki V, Pfäffli P (1978) Percutaneous absorption of solvent vapor in man. Scand J Work Environ Health 4:73–85

    PubMed  Google Scholar 

  20. Riihimäki V, Savolainen K (1980) Human exposure tom-xylene. Kinetics and acute effects on the central nervous system. Ann Occup Hyg 23:411–422

    Article  PubMed  Google Scholar 

  21. Salvini M, Binaschi S, Riva M (1971) Evaluation of the psychophysiological functions in humans exposed to “Threshold Limit Value” of 1,1,1-trichloroethane. Br J Ind Med 283:268–292

    Google Scholar 

  22. Savolainen K (1980) Combined effects of xylene and alcohol on the central nervous system. Acta Pharmacol Toxicol 46:366–372

    Article  CAS  Google Scholar 

  23. Savolainen K, Linnavuo M (1979) Effects ofm-xylene on human equilibrium measured with a quantitative method. Acta Pharmacol Toxicol 44:315–318

    Article  CAS  Google Scholar 

  24. Savolainen K, Riihimäki V, Linnoila M (1979) Effects of shortterm xylene exposure on psychophysiological functions in man. Int Arch Occup Environ Health 44:201–211

    Article  PubMed  CAS  Google Scholar 

  25. Savolainen K, Riihimäki V, Seppäläinen AM, Linnoila M (1980) Effects of short-termm-xylene exposure and physical exercise on the central nervous system. Int Arch Occup Environ Health 45:105–121

    Article  PubMed  CAS  Google Scholar 

  26. Savolainen K, Riihimäki V, Laine A, Kekoni J (1981) Shortterm exposure of human subjects tom-xylene and 1,1,1-trichloro ethane. Int Arch Occup Environ Health 49:89–98

    Article  PubMed  CAS  Google Scholar 

  27. Savolainen K, Riihimäki V, Laine A (1982) Biphasic effects of inhaled solvents on human equilibrium. Acta Pharmacol Toxicol 51:237–242

    Article  CAS  Google Scholar 

  28. Savolainen K, Riihimäki V, Muona O, Kekoni I, Luukkonen R, Laine A (1985) Conversely exposure-related effects between, atmosphericm-xylene concentrations and human body sense of balance. Acta Pharmacol Toxicol 57:67–71

    Article  CAS  Google Scholar 

  29. Schwarz K, Kielholz P, Hobi L, et al (1981) Alcohol-induced biphasic background and stimulus-elicited EEG changes in relation to blood alcohol levels. Int J Clin Pharmacol Ther Toxicol 19:102–111

    PubMed  CAS  Google Scholar 

  30. Seppäläinen AM (1988) Neurophysiological approaches to the detection of early neurotoxicity in humans. Crit Rev Toxicol 184:245–298

    Google Scholar 

  31. Seppäläinen AM, Salmi T, Savolainen K, Riihimäki V (1983) Visual evoked potentials in short-term exposure of human subjects tom-xylene and 1,1,1-trichloroethane. In: Zbinden G, Cuomo V, Racagni G, Weiss B (eds) Application of behavioral pharmacology in toxicology. Raven Press, New York

    Google Scholar 

  32. Seppäläinen AM, Laine A, Salmi T, Riihimäki V, Verkkala E (1989) Changes induced by short-term xylene exposure in human evoked potentials. Int Arch Occup Environ Health 61:443–449

    Article  PubMed  Google Scholar 

  33. Seppäläinen AM, Laine A, Salmi T, Verkkala E, Riihimäki V, Luukkonen R (1991) Electroencephalographic findings during experimental human exposure tom-xylene. Arch Environ Health 46:16–24

    Article  PubMed  Google Scholar 

  34. Stewart RD, Gay HH, Schaffer AW, Erley DS, Rowe VK (1969) Experimental human exposure to methyl chloroform vapor. Arch Environ Health 19:379–387

    Google Scholar 

  35. Torkelson TR, Oyen F, McCollister DD, Rowe VK (1985) Toxicity of 1,1,1-trichloroethane as determined on laboratory animals and human subjects. Am Ind Hyg Assoc J 19:353–362

    Google Scholar 

  36. World Medical Association (1975). The Declaration of Helsinki. Recommendations guiding doctors in biomedical research involving human subjects. Adopted by the 18th World Medical Assembly, Helsinki, Finland, 1964, and revised by the 29th World Medical Assembly. Tokyo, Japan

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laine, A., Seppäläinen, A.M., Savolainen, K. et al. Acute effects of 1,1,1-trichloroethane inhalation on the human central nervous system. Int. Arch Occup Environ Heath 69, 53–61 (1996). https://doi.org/10.1007/BF02630739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630739

Key words

Navigation