Skip to main content
Log in

Quantum dissipative systems. III. Definition and algebraic structure

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Starting from the requirement of a consistent quantum description of dissipative (non-Hamiltonian) systems, which is formulated as the absence of a contradiction between the evolution equations for quantum dissipative systems and quantum commutation relations, we show that the Jacobi identity is not satisifed. Thus, the requirement for a consistent quantum description forces one go beyond the Lie algebra. As a result, anticommutative non-Lie algebras are necessary to describe dissipative (non-Hamiltonian) systems in quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Tarasov,Theor. Math. Phys.,100, 1100 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Haken,Light, Vol. 2,Laser Light Dynamics, North-Holland, Amsterdam-New York-Oxford-Tokyo (1985).

    Google Scholar 

  3. V. E. Tarasov, “Dissipative quantum mechanics: generalization of canonical quantization and the von Neumann equation,” Preprint IC-94-192, ICTP, Trieste (1994); hep-th/9410025.

  4. V. M. Fillipov, V. M. Savchin, and S. G. Shorokhov, “Variational principles for nonpotential operators,” in:Modern Problems of Mathematics [in Russian], VINITI, Moscow (1992), p. 3–178.

    Google Scholar 

  5. I. K. Edwards,Amer. J. Phys. Rev.,47, No. 2, 153–155 (1979).

    Article  ADS  Google Scholar 

  6. M. Hensel and H. J. Korsch,J. Phys. A,25, 2043–2064 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. J. Ellis, J. S. Hagelin, D. V. Nanopoulos, and M. Srednicki,Nucl. Phys. B,242, 381–395 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. H. Steeb,Physica A,95, 181–190 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  9. V. S. Mashkevich,Laser Kinetics, Elsevier, Amsterdam (1967).

    Google Scholar 

  10. J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos,Phys. Lett. B,293, 37–48 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  11. V. E. Tarasov,Theor. Math. Phys.,101, 1184 (1994).

    MATH  MathSciNet  Google Scholar 

  12. V. E. Tarasov,Phys. Lett. B,323, 296–304 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. E. Tarasov,Mod. Phys. Lett. A,9, 2411–2419 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. S. A. Hojman and L. C. Shepley,J. Math. Phys.,32, 142–146 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. U. Bratelli, “On dynamical semigroups and compact group actions,” in:Lect. Notes in Math., Vol. 1055, Springer, Berlin-Heidelberg (1984), pp. 46–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 110, No. 1, pp. 73–85, January, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasov, V.E. Quantum dissipative systems. III. Definition and algebraic structure. Theor Math Phys 110, 57–67 (1997). https://doi.org/10.1007/BF02630369

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630369

Keywords

Navigation