The moon

, Volume 12, Issue 3, pp 299–329 | Cite as

Processes of lunar crater degradation: Changes in style with geologic time

  • James W. Head


Lunar crater degradation can be divided into two time periods based on differing styles and rates of crater degradation processes. Comparison of lunar radiometric age scales and the relative degradation of crater morphologic features for craters larger than about 5 km diam shows that Period I, prior to about 3.85–3.95 b.y. ago, is characterized by a high influx rate and by formation of large, multi-ringed basins. Period II, from about 3.85–3.95 b.y. to present, is characterized by a much lower influx rate and lack of large multi-ringed basins. Craters formed throughout Period II show generally constant morphologic characteristics. Craters formed in Period I show markedly different characteristics although their residence time could not have increased more than 15% over the total time of Period II. The vast majority of crater degradation of Period I craters took place nearly coincident with their time of formation.

Elements of crater degradation and modification during Period I include destruction of crater exterior, rim, and wall facies and structures, decrease in crater depth, and increase in crater floor width. Examination of fresh crater geometry reveals that major changes in crater depth and floor width parameters can occur with the addition of only minor volumes of material as crater fill. Volumes sufficient to produce these characteristic changes are readily available in the surrounding crater wall and rim deposits and can be derived by erosion associated with the observed morphologic changes. Depositional mechanisms associated with lunar landslides are capable of moving material across the crater floor-wall boundary while maintaining and propagating the characteristic break in slope. A prime source of crater degradation during Period I is related to the formation of multiringed basins. The widespread ballistic sedimentation associated with the formation of these basins produces a near-saturation bombardment which excavates and mobilizes large volumes of local material and preferentially moves it into nearby low regions. Seismic effects contribute to degradation by enhancing slope instability and by mobilizing material for downslope movement. The net effect for a crater influenced by multi-ringed basin formation is a tendency toward destruction of crater facies and structure by near-saturation bombardment and seismic effects, the erosion and mobilization of crater material, and the redeposition of this material in nearby low regions, primarily on the crater floor. This process appears to be of major importance in the degradation and modification of craters, in generation of interior crater fill, and in the formation and propagation of Cayley-type plains surfaces.


Lunar Surface Crater Depth Crater Wall Crater Floor Lunar Crater 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. B. and McCord, T. B.: 1971,Science 171, 567–571.CrossRefADSGoogle Scholar
  2. Adams, J. B. and McCord, T. B.: 1972a,Lunar Science III, Lunar Science Institute, Houston, 1–3.Google Scholar
  3. Adams, J. B. and McCord, T. B.: 1972b, in D. Criswell (ed.),Proc. Third Lunar Sci. Conf. 3, 3021–3034, MIT Press, Cambridge, Mass.ADSGoogle Scholar
  4. Adams, J. B. and McCord, T. B.: 1973, in W. Gose (ed.),Proc. Fourth Lunar Sci. Conf. 1, 163–177, Pergamon Press, N.Y.ADSGoogle Scholar
  5. Adler, I., Trombka, J. I., Schmadebeck, R., Lowman, P., Blodget, H., Yin, L., Eller, E., Podwysocki, M., Weidner, J. R., Bickel, A. L., Lum, R., Gerard, Y., Gorenstein, P., Bjorkholm, P., and Harris, B.: 1973, in W. Gose (ed.),Proc. Fourth Lunar Sci. Conf. 3, 2783–2791, Pergamon Press, N.Y.Google Scholar
  6. Adler, J. E. M. and Salisbury, J. W.: 1969,Icarus 10, 37–52.CrossRefADSGoogle Scholar
  7. Arthur, D. W. G., Agnieary, A. P., Horvath, R. A., Wood, C. A., and Chapman, C. R.: 1963, ‘The System of Lunar Craters, Quadrant I’,Contr. Lunar Planetary Lab. 2, 30.Google Scholar
  8. Arthur, D. W. G., Agnieary, A. P., Horvath, R. A., Wood, C. A., and Chapman, C. R.: 1964, ‘The System of Lunar Craters, Quadrant II,Contr. Lunar Planetary Lab. 3, 40.Google Scholar
  9. Arthur, D. W. G., Agnieary, A. P., Pellicori, R. H., Wood, C. A., and Weller, T.: 1965, ‘The Syste of Lunar Craters, Quadrant III’,Contr. Lunar Planetary Lab. 3, 50.Google Scholar
  10. Arthur, D. W. G., Pellicori, R. H., and Wood, C. A.: 1966, ‘The System of Lunar Craters, Quadrant IV’,Contr. Lunar Planetary Lab. 5, 70.Google Scholar
  11. Baldwin, R. B.: 1949,The Face of the Moon, Univ. of Chicago Press, Chicago, Ill.Google Scholar
  12. Baldwin, R. B.: 1963,The Measure of the Moon, Univ. of Chicago Press, Chicago, Ill.Google Scholar
  13. Baldwin, R. B.: 1968,Icarus 9, 401–404.CrossRefADSGoogle Scholar
  14. Baldwin, R. B.: 1970,Icarus 13, 215–225.CrossRefADSGoogle Scholar
  15. Baldwin, R. B.: 1971,Phys. Earth Planetary Interiors 4, 167–179.CrossRefADSGoogle Scholar
  16. Beals, C. S.: 1971,J. Geophys. Res. 76, 5586–5595.ADSGoogle Scholar
  17. Chapman, C. R., Mosher, M. A., and Simmons, G.: 1970,J. Geophys. Res. 75, 1445–1466.ADSGoogle Scholar
  18. Chapman, C. R., Pollack, J. B., and Sagan, C.: 1969,Astron. J. 74, 1039–1051.CrossRefADSGoogle Scholar
  19. Eggleton, R. E. and Schaber, G. G.: 1972, NASA SP-315, 29-7 to 29-16.Google Scholar
  20. Fielder, G.: 1965,Lunar Geology, 184 pp., Lutterworth Press, London, England.Google Scholar
  21. Hartmann, W. K.: 1969,Icarus 12, 131–133.CrossRefADSGoogle Scholar
  22. Hartmann, W. K.: 1971,Icarus 15, 396–409.CrossRefADSGoogle Scholar
  23. Hartmann, W. K.: 1972,Astrophys. Space Sci. 17, 48–64.CrossRefADSGoogle Scholar
  24. Hartmann, W. K. and Wood, C. A.: 1971,The Moon 3, 3–78.CrossRefADSGoogle Scholar
  25. Head, J. W.: 1972, NASA SP-315, 29-16 to 29-20.Google Scholar
  26. Head, J. W.: 1974a,Lunar Science V, 316–318, Lunar Science Institute, Houston.Google Scholar
  27. Head, J. W.: 1974b, ‘Sedimentary Origin of “Imbrium Sculpture” and Lunar Basin Radial Structure’, (abs.), Geol. Soc. Am., 1974 Annual Meeting.Google Scholar
  28. Head, J. W.: 1974c,The Moon 11, 77–99.CrossRefADSGoogle Scholar
  29. Heiken, G. H., McKay, D. S., and Brown, R. W.: 1974,Geochim. Cosmochim. Acta 38 (in press).Google Scholar
  30. Howard, K. A.: 1973,Science 180, 1052–1055.CrossRefADSGoogle Scholar
  31. Howard, K. A., Wilhelms, D. E., and Scott, D. H.: 1974,Rev. Geophys. Space Phys. 12, 309–327.ADSGoogle Scholar
  32. Kirsten, T., Horn, P., and Kiko, J.: 1973,Geochim. Cosmochim. Acta, Supp. 4 2, 1757–1784.Google Scholar
  33. Lucchitta, B. K.: 1974, in W. Gose (ed.),Proc. Fourth Lunar Sci. Conf. 1, 149–162; Pergamon Press, N.Y.Google Scholar
  34. McCord, T. B., Charette, M. P., Johnson, T. V., Lebofsky, L. A., and Pieters, C.: 1972,J. Geophys. Res. 77, 1349–1359.ADSGoogle Scholar
  35. McGetchin, T. R. and Head, J. W.: 1973,Science 180, 68–71.CrossRefADSGoogle Scholar
  36. Metzger, A. E., Trombka, J. I., Arnold, J. R., Reedy, R. C., and Peterson, L. E.: 1973, in W. Gose (ed.),Proc. Fourth Lunar Sci. Conf. 3, 2847–2853, Pergamon Press, N.Y.Google Scholar
  37. Mickey, W. V.: 1964, ‘Seismic Wave Propagation’, inEngineering with Nuclear Explosions - Proceedings of the Third Plowshare Symposium, U.S. Atomic Energy Comm. T10-7659 (UC-35), 181-193-Google Scholar
  38. Oberbeck, V. R.: 1971,The Moon 2, 263–278.CrossRefADSGoogle Scholar
  39. Oberbeck, V. R. and Morrison, R. H.: 1973a,The Moon 9, 415–455.CrossRefADSGoogle Scholar
  40. Oberbeck, V. R. and Morrison, R. H.: 1973b, in W. A. Gose (ed.),Proc. Fourth Lunar Sci. Conf. 1, 107–123, Pergamon Press, N.Y.Google Scholar
  41. Oberbeck, V. R., Hörz, F., Morrison, R. H., and Quaide, W. L.: 1973,Emplacement of the Cayley Formation, NASA Technical Memorandum, TMX-62, p. 302.Google Scholar
  42. Oberbeck, V. R., Hörz, F., Morrison, R. H., Quaide, W. C., and Gault, D.: 1974,Lunar Science V, 568–570, Lunar Science Institute, Houston.Google Scholar
  43. Offield, T. W. and Pohn, H. A.: 1970,Lunar Crater Morphology and Relative-Age Determination of Lunar Geologic Units, Part 2, Applications, U.S. Geol. Survey Prog. Paper 700-C, C163-169.Google Scholar
  44. Offield, T. W. and Pohn, H. A.: (manuscript), ‘Crater Age Classification Used on Lunar Geologic Maps’.Google Scholar
  45. Papanastassiou, D. A. and Wasserburg, G. J.: 1971a,Earth Planetary Sci. Letters 11, 37–62.CrossRefADSGoogle Scholar
  46. Papanastassiou, D. A. and Wasserburg, G. J.: 1971b,Earth Planetary Sci. Letters 12, 36–48.CrossRefADSGoogle Scholar
  47. Pike, R. J.: 1968, ‘Meteoritic Origin and Consequent Endenogenic Modification of Large Lunar Craters - a Study in Analytical Geomorphology’, Ph. D. Thesis, University of Michigan, 404 pp.Google Scholar
  48. Pike, R. J.: 1971,Icarus 15, 384–395.CrossRefADSGoogle Scholar
  49. Pohn, H. A. and Offield, T. W.: 1970,Lunar Crater Morphology and Relative Age Determination of Lunar Geologic Units, Part 1, Classification, U.S. Geol. Survey Prof. Paper 700-C, C153-162.Google Scholar
  50. Ronca, L. B. and Green, R. R.: 1970,Geol. Soc. Am. Bull. 81, 337–352.CrossRefGoogle Scholar
  51. Ross, H. P.: 1968,J. Geophys. Res. 73, 1343–1354.ADSGoogle Scholar
  52. Rükl, A.: 1972, ‘Maps of Lunar Hemispheres’,Astrophys. Space Sci. Lib. 33, 6 maps.Google Scholar
  53. Schultz, P. H.: 1974,Lunar Science V, 681–684, Lunar Science Institute, Houston.Google Scholar
  54. Silver, L. T.: 1971,Trans. Am. Geophys. Union 52, 534.Google Scholar
  55. Soderblom, L. A.: 1970, ‘The Distribution and Ages of Regional Lithologies in the Lunar Maria’, Ph. D. Thesis, California Inst. of Technology, 139 pp.Google Scholar
  56. Soderblom, L. A. and Boyce, J. M.: 1972, NASA SP-315, 29-3 to 29-6.Google Scholar
  57. Soderblom, L. A. and Lebofsky, L. A.: 1972,J. Geophys. Res. 77, 279–296.CrossRefADSGoogle Scholar
  58. Soderblom, L. A., West, R. A., Herman, B. M., Kreidler, T. J., and Condit, C. D.: 1974,Icarus (in press).Google Scholar
  59. Stuart-Alexander, D. E. and Howard, A. K.: 1970,Icarus 12, 440–456.CrossRefADSGoogle Scholar
  60. Tera, F., Papanastassiou, D. A., and Wasserburg, G. J.: 1974,Earth Planetary Sci. Letters 22, 1–21.CrossRefADSGoogle Scholar
  61. Titley, S. R.: 1966,Seismic Energy as an Agent of Morphologic Modification on the Moon, U.S. Geol. Survey, Astrogeologic Studies, Ann. Prog. Repr. pt. A, p. 87-101.Google Scholar
  62. Van Dorn, W. G.: 1968,Nature 220, 1102–1107.CrossRefADSGoogle Scholar
  63. Van Dorn, W. G.: 1969,Science 165, 693–695.CrossRefADSGoogle Scholar
  64. Wasserburg, G. J. and Papanastassiou, D. A.: 1972,Earth Planetary Sci. Letters 13, 97–104.CrossRefADSGoogle Scholar
  65. Wasserburg, G. J., Huneke, J. C., Papanastassiou, D. A., Podosek, F. A., and Turner, G.: 1972,Space Res. XII 1, 39–42.Google Scholar
  66. Wilhelms, D. E.: 1970,Summary of Lunar Stratigraphy-Telescopic Observations, U.S. Geological Survey, Prof. Paper 599F, F1-F47.Google Scholar
  67. Wilhelms, D. E. and McCauley, J. F.: 1971, ‘Geologic Map of the Near Side of the Moon’, U.S. Geol. Survey, Map I-703.Google Scholar
  68. Wood, C. A.: 1969,Comm. Lunar Planetary Lab. 8, 157–160, Univ. of Arizona, Tucson, Ariz.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1975

Authors and Affiliations

  • James W. Head
    • 1
  1. 1.Dept. of Geological SciencesBrown UniversityProvidenceUSA

Personalised recommendations