Skip to main content
Log in

Species specificity of iron delivery in hybridomas

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Studies with Human x Human (HxH), Human x Mouse (HxM), and Mouse x Mouse (MxM) hybridomas have enabled us to define specific factors that affect hybridoma growth in a species-specific manner. Three transferrins and three lipophilic iron chelates have been tested for their ability to support hybridoma proliferation and antibody production. The results of these studies demonstrate that HxH hybridomas do not respond to bovine transferrin a+ concentrations up to 100 μg/ml and are approximately 100-fold less responsive to mouse transferrin than to human transferrin. HxM and MxM hybridomas respond equally to human or mouse transferrin but are 100-fold less sensitive to bovine transferrin. An antibody to the human transferrin receptor inhibited the growth-promoting activity of human or mouse transferrin on HxH hybridomas but was ineffective on HxM hybridomas. This semonstrated the functionality of the human transferrin receptor in HxH hybridomas and that human, mouse, and bovine transferrin were interacting through the mouse transferrin receptor in HxM hybridomas. HxH and HxM hybridomas respond similarly to three different iron chelates exhibiting 80 to 110% of the growth response to human transferrin. MxM hybridomas fail to respond to the iron chelates at similar concentrations, suggesting that the human genome present in the other hybridoma species confers a unique ability for utilizing iron when delivered in this form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aisen, P.; Listowsky, I. Iron transport and storage proteins. Ann. Rev. Biochem. 49:357–393; 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Arosio, P.; Adelman, T.; Drysdale, J. W. On ferritin heterogeneity. J. Biol. Chem. 253:4451–4458; 1978.

    PubMed  CAS  Google Scholar 

  3. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Bartek, J.; Viklicky, V.; Stratil, A. Phylogenetically more conservative epitopes among monoclonal antibody-defined antigenic sites of human transferrin are involved in receptor binding. Br. J. Haematol. 59:435–441; 1985.

    PubMed  CAS  Google Scholar 

  5. Bridges, K. R.; Cudkowice, A. Effect of iron chelators on the transferrin receptor in K562 cells. J. Biol. Chem. 259:12970–12977; 1984.

    PubMed  CAS  Google Scholar 

  6. Crichton R. R.; Millar, J. A.; Cumming, R. L. C., et al. The organ-specificity of ferritin in human and horse liver and spleen. Biochem. J. 131:51–59; 1973.

    PubMed  CAS  Google Scholar 

  7. Dautry-Vargat, A.; Ciechanover, A.; Lodish, H. F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 80:2258–2262; 1982.

    Article  Google Scholar 

  8. Drysdale, J. W.; Adelman, T. G.; Arosio, P., et al. Human isoferritins in normal and disease states. Semin. Hematol. 14:71–88; 1977.

    PubMed  CAS  Google Scholar 

  9. Ekblom, P.; Thesleff, I.; Saxen, L., et al. Transferrin as a fetal growth factor: Acquisition of responsiveness related to embryonic induction. Proc. Natl. Acad. Sci. USA 80:2651–2655; 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Harding, C.; Heuser, J.; Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97:329–339; 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Harrison, P. Ferritin: An iron storage molecule. Semin. Hematol. 14:55–70; 1977.

    PubMed  CAS  Google Scholar 

  12. Hopkins, C. R.; Trowbridge, I. S. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J. Cell Biol. 97:508–521; 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Ill, C. R.; Gospodarowicz, D. Factors involved in supporting the growth and steroidogenic functions of bovine adrenal cortex cells maintained on extracellular matrix and exposed to a defined medium. J. Cell Physiol. 113:373–384; 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Kitada, S.; Hays, E. F. Transferrin-like activity produced by murine malignant T-lymphoma cell lines. Cancer Res. 45:3537–3540; 1985.

    PubMed  CAS  Google Scholar 

  15. Klausner, R. D.; Ashwell, G.; Van Renswoude, J., et al. Binding of apotransferrin to K562 cells: Explanation of the transferrin cycle. Proc. Natl. Acad. Sci. USA 80:2263–2266; 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Klausner, R. D.; Van Renswoude, J.; Kempf, C., et al. Receptor-mediated endocytosis of transferrin in K562 cells. J. Biol. Chem. 258:4715–4724; 1983.

    PubMed  CAS  Google Scholar 

  17. Laemmli, U. K. Cleavage of structured proteins during the assembly of the head of bacteriophase T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  18. Landschultz, W.; Thesleff, I.; Ekblom, P. A lipophilic iron chelator can replace transferrin as a stimulator of cell proliferation and differentiation. J. Cell Biol. 98:596–601; 1984.

    Article  Google Scholar 

  19. Landschultz, W.; Ekblom, P. Iron delivery during proliferation and differentiation of kidney tubules. J. Biol. Chem. 260:15580–15584; 1985.

    Google Scholar 

  20. Octave, J. N.; Schneider, Y. J.; Hoffman, P., et al. Transferrin uptake by cultured rat embryo fibroblasts. Eur. J. Biochem. 123:235–240; 1982.

    Article  PubMed  CAS  Google Scholar 

  21. Perez-Infante, V.; Mather, J. P. The role of transferrin in the growth of testicular cell lines in serum-free medium. Exp. Cell Res. 142:325–332; 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Ponka, P.; Borova, J.; Neuwirt, J., et al. Mobilization of iron from reticulocytes. Feb's. Lett. 97:317–321; 1979.

    Article  CAS  Google Scholar 

  23. Skinner, M. K.; Fritz, I. B. Testicular peritubular cells secrete a protein under androgen control that modulates sertoli cell functions. Proc. Natl. Acad. Sci. USA. 82:114–118; 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Taetle, R.; Rhyner, K.; Castagnola, J., et al. Role of transferrin, Fe, and transferrin receptors in myeloid leukemia cell growth. Studies with an antitransferrin receptor antibody. J. Clin. Invest. 75:1061–1067; 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi, K.; Tavassoli, M. Biphasic uptake of iron-transferrin complex by L1210 murine leukemia cells and reticulocytes. Biochem. Biophys. Acta 685:6–12; 1982.

    Article  PubMed  CAS  Google Scholar 

  26. Tormey, D. C.; Imrie, R. C.; Mueller, G. C. Identification of transferrin as a lymphocyte growth promoter in human serum. Exp. Cell Res. 74:163–169; 1972.

    Article  PubMed  CAS  Google Scholar 

  27. Trowbridge, I. S.; Domingo, D. L. Anti-transferrin receptor monoclonal antibody and toxin-antibody conjugates affect growth of human tumour cells. Nature 294:171–173; 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Trowbridge, I. S.; Omary, M. B. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc. Natl. Acad. Sci. USA 78:3039–3043; 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Tsuji, S.; Kto, H.; Matsuoka, Y., et al. Molecular weight heterogeneity of bovine serum transferrin. Biochem. Genet. 22:1145–1159; 1984.

    Article  PubMed  CAS  Google Scholar 

  30. Tsuji, S.; Kato, H.; Matsuoka, Y., et al. Phylogenetical and ontogenetical studies on the molecular weight heterogeneity of bovine serum transferrin. Biochem. Genet. 22:1127–1143; 1984.

    Article  PubMed  CAS  Google Scholar 

  31. Vogt, A.; Mishell, R. I.; Dutton, R. W. Stimulation of DNA synthesis in cultures of mouse spleen cell suspensions by bovine transferrin. Exp. Cell Res. 54:195–200; 1969.

    Article  PubMed  CAS  Google Scholar 

  32. Wagstaff, M.; Worwood, M.; Jacobs, A. Properties of human tissue isoferritins. Br. J. Haematol. 173:969–977; 1978.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ill, C.R., Brehm, T., Lydersen, B.K. et al. Species specificity of iron delivery in hybridomas. In Vitro Cell Dev Biol 24, 413–419 (1988). https://doi.org/10.1007/BF02628492

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628492

Key words

Navigation