Skip to main content
Log in

Monte Carlo studies of nuclear many-particle systems

  • Articles
  • Part 5. Atomic Molecular and Nuclear Physics
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Stochastic evaluation of path integrals provides a useful tool for the study of a variety of nuclear systems which are otherwise not amenable to definitive analysis through perturbative, variational, or stationary-phase approximations. Ground state properties of potential models, such as quantum fluctuations in the density, are examined. Tunneling problems in quantum many-particle systems, such as spontaneous fission and the ground state structure of systems with degenerate vacuua are treated by incorporating one's physical understanding of the essential collective degrees of freedom in the stochastic algorithm. The role of subnuclear degrees of freedom is studied by comparing the exact solution of a simple confining quark model with the solution to a phase-shift equivalent hadronic potential model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Ceperley and M. H. Kalos,Monte Carlo Methods in Statistical Mechanics, K. Binder, ed. (Springer-Verlag, New York, 1979).

    Google Scholar 

  2. S. E. Koonin,Nuclear Theory 1981, G. F. Bertsch, ed. (World Scientific, 1981).

  3. J. W. Negele,Proceedings of the International Symposium on Time-Dependent Hartree-Fock and Beyond, Lecture Notes in Physics, No. 171, K. Geoke and P. G. Reinhardt, eds. (Springer-Verlag, New York, 1982).

    Google Scholar 

  4. C. Horowitz, E. Moniz, and J. W. Negele,Phys. Rev. D 31:1689 (1985).

    Article  ADS  Google Scholar 

  5. J. W. Negele,Proceedings of “Path Integrals from mev to MeV” J. Klauder, ed. (Bielefeld, 1985).

  6. J. W. Negele,Rev. Mod. Phys. 54:913 (1982).

    Article  ADS  Google Scholar 

  7. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Article  Google Scholar 

  8. J. W. Moskowitz, K. E. Schmidt, M. A. Lee, and M. H. Kalos,J. Chem. Phys. 77:349 (1982).

    Article  ADS  Google Scholar 

  9. D. Ceperley and M. Kalos, private communication; E. L. Pollack and D. M. Ceperley,Phys. Rev. B 30:2555 (1984).

  10. J. Langer,Ann. Phys. (N.Y.) 54:258 (1969).

    Article  ADS  Google Scholar 

  11. A. M. Polyakov,Nucl. Phys. B 121:429 (1977).

    Article  ADS  Google Scholar 

  12. S. Coleman, inThe Whys of Nuclear Physics, A. Zichichi, ed. (Plenum, New York, 1977), p. 805.

    Google Scholar 

  13. C. Alexandrou, Ph. D. dissertation (MIT, 1985).

  14. M. Creutz and B. Freedman,Ann. Phys. 132:427 (1981).

    Article  ADS  Google Scholar 

  15. F. Lenz, J. T. Longergan, E. J. Moniz, R. Rosenfelder, M. Stingl, and K. Yazaki,Ann. Phys. in press.

  16. R. M. Panoff, private communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported in part through funds provided by the U.S. Department of Energy (D.O.E.) under contract number DE-AC02-76ERO3069.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negele, J.W. Monte Carlo studies of nuclear many-particle systems. J Stat Phys 43, 991–1015 (1986). https://doi.org/10.1007/BF02628326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628326

Key words

Navigation