Skip to main content
Log in

Turbulent thermal in a stratified atmosphere

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

An approximate analytical model of a turbulent thermal in a stratified atmosphere is proposed. This model makes it possible to predict the dynamics of the ascent, suspension and oscillation processes of a buoyant cloud both within the troposphere and on entering the stratossphere. The values of the heat energy needed for the thermal to penetrate the tropopause in northern and southern latitudes are estimated. Estimates are obtained for the amount of material dumped into the stratosphere. A method of determining the thermal energy of volcanic eruptions of the explosive type is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Ya. B. Zel'dovich, “Limiting laws of freely ascending convective flows,” Zh. Eksp. Teor. Fiz.,7, 1463 (1937).

    Google Scholar 

  2. Yu. A. Gostintsev, L. A. Sukhanov, and A. F. Solodovnik, “Limiting laws of unsteady, freely ascending turbulent convective motions in the atmosphere,” Dokl. Akad. Nauk SSSR,252, 311 (1980).

    Google Scholar 

  3. B. R. Morton, G. I. Taylor, and J. S. Turner, “Turbulent gravitational convection from maintained and instantaneous sources,” Proc. R. Soc. London, Ser. A:234, 1 (1956).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. C. P. Wang, “Motion of turbulent buoyant thermal in a calm stably stratified atmosphere,” Phys. Fluid,16, 744 (1973).

    Article  ADS  Google Scholar 

  5. A. M. Grishin, N. A. Alekseev, O. I. Brabander, and V. F. Zal'mezh, “Propagation of forest fire thermals in the surface layer of the atmosphere,” in: Thermophysics of Forest Fires [in Russian], Novosibirsk (1984), pp. 76–85.

  6. B. R. Morton, “Weak thermal vortex rings,” J. Fluid Mech.,9, 107 (1960).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. V. M. Mal'bakhov, “Theory of thermals in a stationary atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana,8, 683 (1972).

    Google Scholar 

  8. Yu. A. Gostintsev and L. A. Sukhanov, “Turbulent concentration-temperature thermal with high viscosity in an unstratified medium” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 153 (1984).

    Google Scholar 

  9. Yu. A. Gostintsev, A. F. Solodovnik, and V. V. Lazarev, “Theory of aerodynamics, autoignition and combustion of turbulent thermals, vortex rings and jets in a free atmosphere,” Khim. Fiz., No. 9, 1279 (1982).

    Google Scholar 

  10. Yu. A. Gostintsev, “Turbulent heat and mass transfer between a rising cloud of combustion products and the surrounding atmosphere,” in: Heat and Mass Transfer in Chemically Reacting Systems [in Russian], Minsk (1983), pp. 3–11.

  11. Yu. A. Gostintsev, A. F. Solodovnik, V. V. Lazarev, and Yu. V. Shatskikh, “Turbulent thermal in a stratified atmosphere,” Preprint [in Russian], Institute of Chemical Physics, USSR Academy of Sciences, Moscow (1985).

    Google Scholar 

  12. E. E. Gossard and W. H. Hook, Waves in Atmosphere, Elsevier Sci. Publ. Co., Amsterdam (1975).

    Google Scholar 

  13. B. A. Lugovtsov, “Motion of a turbulent vortex ring transporting a passive impurity,” in: Some Problems of Mathematics and Mechanics [in Russian], Nauka, Moscow (1970), pp. 182–189.

    Google Scholar 

  14. S. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

    Google Scholar 

  15. A. T. Onufriev, “Theory of motion of a vortex ring under the influence of gravity. Ascent of cloud from an atomic explosion,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 3 (1967).

    Google Scholar 

  16. G. Glasstone and J. Dolan, “The effects of nuclear weapons,” US Dept. Defense, 653 (1977).

  17. W. Kellogg, R. Rann, and S. Greenfield, “Short-range fallout from an atomic explosion,” in: Meteorology and Atomic Energy [Russian translation], Izd. Inostr. Lit., Moscow (1959), pp. 243–255.

    Google Scholar 

  18. R. P. Turko, O. V. Toon, T. P. Ackerman, J. B. Pollack, and C. Sagan, “Nuclear winter: global consequences of multiple nuclear explosions,” Science,222, 1283 (1983).

    Article  ADS  Google Scholar 

  19. E. A. Bauer, “Catalog of perturbing influences on stratospheric ozone. 1955–1975,” J. Geophys. Res., C84, 6929 (1979).

    ADS  Google Scholar 

  20. L. Machta, “Entrainment and the maximum height of an atomic cloud,” Bull. Am. Meteorol. Soc,31, 215 (1950).

    Google Scholar 

  21. K. Telegadas, “Estimation of maximum credible atmospheric radioactivity concentrations and dose rates from nuclear tests,” Atmos. Environ.,13, 327 (1979).

    Article  Google Scholar 

  22. L. Wilson, R. S. Sparks, T. S. Haung, and N. D. Watkins, “The control of volcanic column heights by eruption energetics and dynamics,” J. Geophys. Res., B83, 1829 (1978).

    Article  ADS  Google Scholar 

  23. S. A. Fedotov, “Estimation of the entrainment of heat and pyroclastics by volcanic eruptions and fumaroles from the height of their jets and clouds,” Vulkanologiya i Seismologiya, No. 4, 3 (1982).

    Google Scholar 

  24. P. P. Firstov, P. I. Tokarev, V. K. Lemzikov, “Motion-picture record of the eruption and model of the explosive process of the Karymskii volcano,” Byull. Vulkanol. Stn., No. 55, 151 (1978).

    Google Scholar 

  25. T. Minakami, “On explosive activities of andesic volcanos and their forerunning phenomena,” Bull. Volcanol. Ser. II,10, 59 (1950).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 141–153, November–December, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gostintsev, Y.A., Lazarev, V.V., Solodovnik, A.F. et al. Turbulent thermal in a stratified atmosphere. Fluid Dyn 21, 965–976 (1986). https://doi.org/10.1007/BF02628035

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628035

Keywords

Navigation