Skip to main content
Log in

Nuclear reactions and screened-coulomb fusion rates

  • Special Issue: U.S. Department of Energy Workshop on Cold Fusion Phenomena. Part I
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

We discuss properties of nuclear reactions (branching ratios, reaction constants, etc.) between hydrogen isotopes from the standpoint of recent R-matrix calculation.. Using R-matrix theory to include nuclear effects at small distances, we then develop a general expression for fusion rates in complex systems that, in principle, allows a more complex interplay of the short-ranged (nuclear) and long-ranged (screened Coulomb) forces than does the familiar separable form. Calculations using the latest nuclear R-matrix information in this more correct formulation appear to agree with the separable approximation for screened Coulomb potentials of the Hulthén form, however. They indicate that fusion rates of the order of 10−24s−1 require unreasonably large electron densities if they are to result from screening in the lattice, and are more likely to arise from non-equilibrium processes producing particles with relative energies greater than 100 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Wigner and L. Eisenbud (1947),Phys. Rev.,72, 29; A. M. Lane and R. G. Thomas (1958),Rev. Mod. Phys.,30, 257.

    Article  Google Scholar 

  2. G. M. Hale and D. C. Dodder (1980). R-Matrix Analysis of Light-Element Reactions for Fusion Applications. Proceedings of the Conference on Nuclear Cross Sections for Technology, Knoxville, Tennessee, 1979, NBS Special Publication594, (1980), p. 650.

    Google Scholar 

  3. C. A. Barnes (1971). Nucleosynthesis by charged-particle reactions. InAdvances in Nuclear Physics (Vol. 4, Chap. 3), M. Baranger and E. Vogt, eds. (Plenum Press, New York).

    Google Scholar 

  4. C. R. Chen, G. L. Paine, J. L. Friar, and B. F. Gibson (1989).Phys. Rev. C,39, 1261.

    Article  Google Scholar 

  5. J. L. Langenbrunner G. Feldman, and H. R. Weller (1989). Two deuteron radiative capture: Polarization observables form Ed≤0.8 MeV to Ed=15 MeV.Phys. Rev. C (submitted).

  6. W. A. Fowler, G. R. Caughlin, and B. A. Zimmerman (1967).Ann. Rev. Astron. Astrophys. 5, 525.

    Article  Google Scholar 

  7. R. E. Brown and N. Jarmie (1989). Phys. Rev. C42, 1391.

    Google Scholar 

  8. A. Krauss, H. W. Becker, H. P. Trautvetter, and C. Rolfs (1987).Nucl. Phys.,A465, 150.

    Article  Google Scholar 

  9. R. M. Witton (1989). Ph.D. thesis, Duke University.

  10. D. V. Balinet al. (1984).Phys. Lett.,141B, 173,JETP Lett.,40, 112.

    Google Scholar 

  11. B. P. Adyasevich, V. G. Antonenko, and V. N. Bragin (1981).Yad. Fiz.,33, 1167 (Sov. J. Nucl. Phys.,33, 619).

    Google Scholar 

  12. G. M. Hale and D. C. Dodder (1989). Charge-Independent Description of the d+d Reactions, Reports to the DOE Nuclear Data Committee.

  13. J. D. Jackson (1957).Phys. Rev.,106, 330.

    Article  Google Scholar 

  14. S. E. Joneset al. (1989).Nature,338, 737.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hale, G.M., Smith, R.D. & Talley, T.L. Nuclear reactions and screened-coulomb fusion rates. J Fusion Energ 9, 187–193 (1990). https://doi.org/10.1007/BF02627583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02627583

Keywords

Navigation