Advertisement

Journal of Fusion Energy

, Volume 9, Issue 2, pp 133–148 | Cite as

Measurement and analysis of neutron and gamma-ray emission rates, other fusion products, and power in electrochemical cells having Pd cathodes

  • David Albagli
  • Ron Ballinger
  • Vince Cammarata
  • X. Chen
  • Richard M. Crooks
  • Catherine Fiore
  • Marcel P. J. Gaudreau
  • I. Hwang
  • C. K. Li
  • Paul Linsay
  • Stanley C. Luckhardt
  • Ronald R. Parker
  • Richard D. Petrasso
  • Martin O. Schloh
  • Kevin W. Wenzel
  • Mark S. Wrighton
Special Issue: U.S. Department of Energy Workshop on Cold Fusion Phenomena. Part I

Abstract

Results of experiments intended to reproduce cold fusion phenomena originally reported by Fleischmann, Pons, and Hawkins are presented. These experiments were performed on a pair of matched electrochemical cells containing 0.1×9 cm Pd rods that were operated for 10 days. The cells were analyzed by the following means: (1) constant temperature calorimetry, (2) neutron counting and γ-ray spectroscopy, (3) mass spectral analysis of4He in effluent gases, and4He and3He within the Pd metal, (4) tritium analysis of the electrolyte solution, and (5) x-ray photoelectron spectroscopy of the Pd cathode surface. Within estimated levels of accuracy, no excess power output or any other evidence of fusion products was detected.

Key words

Fusion cold fusion palladium excess heating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fleischmann, S. Pons, and M. Hawkins (1989).J. Electroanal. Chem.,261, 301;263, 187.CrossRefGoogle Scholar
  2. 2.
    S. E. Jones, E. P. Palmer, J. B. Czirr, D. L. Decker, G. L. Jensen, J. M. Thorne, S. F. Taylor, and J. Rafelski (1989).Nature,338, 737.CrossRefGoogle Scholar
  3. 3.
    A. DeNinno, A Frattolillo, G. Lollobattista, L. Martinia, M. Martone, L. Mori, S. Fodda, and F. Scaramuzzi (1989).Europhys. Lett.,9, 221.Google Scholar
  4. 4.
    R. D. Petrasso, X. Chen, K. W. Wenzel, R. R. Parker, C. K. Li, and C. Fiore (1989).Nature,339, 183;667.CrossRefGoogle Scholar
  5. 5.
    M. Fleischmann (1989). As we have repeatedly pointed out, we are well aware of the deficiencies of these [γ-ray] spectra. 175th Meeting of the Electrochemical Society, Los Angeles, California, May 1989; J. Maddox (1989).Nature,340, 15.Google Scholar
  6. 6.
    M. Fleischmann, S. Pons, M. Hawkins, and R. J. Hoffman (1989).Nature,339, 667.CrossRefGoogle Scholar
  7. 7.
    A. J. Appleby, S. Srinivasan, Y. J. Kim, O. J. Murphy, and C. R. Martin (1989). Presented at the Workshop on Cold Fusion Phenomena, Santa Fe, New Mexico, May 23–25.Google Scholar
  8. 8.
    A. Belzner, U. Bischler, S. Crouch-Baker, T. M. Gur, F. Lucier, M. Schreiber, and R. A. Huggins (1989). Presented at the Workshop on Cold Fusion Phenomena, Santa Fe, New Mexico, May 23–25.Google Scholar
  9. 9.
    K. L. Wolf, N. Packham, J. Shoemaker, F. Cheng, and D. Lawson (1989). Presented at the Workshop on Cold Fusion Phenomena, Santa Fe, New Mexico, May 23–25.Google Scholar
  10. 10.
    Meeting abstracts and abstracts selected for poster sessions. (1989). Workshop on Cold Fusion Phenomena, Santa Fe, New Mexico, May 23–25.Google Scholar
  11. 11.
    G. Horanyi (1989).Electrochim. Acta,34, 889.CrossRefGoogle Scholar
  12. 12.
    S. E. Koonin and M. Nauenberg (1989).Nature,339, 690.CrossRefGoogle Scholar
  13. 13.
    A. J. Leggett and G. Baym (1989).Nature,340, 45.CrossRefGoogle Scholar
  14. 14.
    179th American Chemical Society National Meeting, Dallas, Texas, April 1989.Google Scholar
  15. 15.
    175th Meeting of the Electrochemical Society, Los Angeles, California, May 1989.Google Scholar
  16. 16.
    F. K. McGowanet al. (1969).Nuclear Data Tables,A6, 353;A8, 199 (1970).Google Scholar
  17. 17.
    S. E. Jones (1986)Nature,321, 127.CrossRefGoogle Scholar
  18. 18.
    T. Graham (1966).Phil. Trans. Roy. Soc. (London),156 415.Google Scholar
  19. 19.
    F. A. Lewis (1967),The Palladium Hydrogen System (Academic Press, London)Google Scholar
  20. 20.
    J. E. Worsham, Jr., M. K. Wilkinson and C. G. Shull (1957).J. Phys. Chem. Soln.,3, 303.CrossRefGoogle Scholar
  21. 21.
    L. L. Lohr,J. Phys. Chem. (1989),93, 4697.CrossRefGoogle Scholar
  22. 22.
    Z. Sun and D. Tománek (1989).Phys. Rev. Lett.,63, 59.CrossRefGoogle Scholar
  23. 23.
    D. P. Smith (1948)Hydrogen in Metals (The University of Chicago Press, Chicago).Google Scholar
  24. 24.
    E. Wicke, H. Brodowsky, and H. Züchner (1978). InHydrogen in Metals II, Topics in Applied Physics (Vol. 29) G. Alefeld and J. Völkl, eds. (Springer-Verlag, Berlin), Vol. 29.Google Scholar
  25. 25.
    G. Sicking (1972).Ber. Bunsenges. Phys. Chem.,76, 790.Google Scholar
  26. 26.
    W. F. Reilly (1959), Construction and calibration of a standard pile, M. S. Thesis, M.I.T., Cambridge, MA, (b) M. E. Anderson,Nucl Appl.,4, 142 (1968).Google Scholar
  27. 27.
    J. P. Hoare (1985). InStandard Potentials in Aqueous Solutions (Chap. 4), A. J. Bard, R. Parsons, and J. Jordan, eds. (Dekker, New York).Google Scholar
  28. 28.
    C. Walling and J. Simons (1989).J. Phys. Chem.,93, 4693.CrossRefGoogle Scholar
  29. 29.
    G. J. Thomas and J. M. Mintz (1983).J. Nucl. Mat.,116, 336; T. Schober (1986). InHydrogen in Disordered and Amorphous Solids, G. Bambakidis and R. C. Bowman, Jr., eds. (Plenum, New York), pp. 377–396.CrossRefGoogle Scholar
  30. 30.
    CRC Handbook of Chemistry and Physics, edited by R. C. Weast, (CRC Press, Boca Raton, FL, 1985), p. F156.Google Scholar
  31. 31.
    M. D. Kurz, W. J. Jenkins, and S. R. Hart,Nature,297, 6, 43 (1982).CrossRefGoogle Scholar
  32. 32.
    M. D. Kurz, W. J. Jenkins, J. C. Schilling, and S. R. Hart,Earth Planet. Sci. Lett.,58, 1 (1982).CrossRefGoogle Scholar
  33. 33.
    Brian Oliver, Rocketdyne Division, Rockwell International, Canoga Park, CA.Google Scholar
  34. 34.
    P. Laibinis, J. Hickman, M. S. Wrighton, and G. Whitesides (1989).Science (in press).Google Scholar
  35. 35.
    M. P. Seah and W. A. Dench (1979).Surface and Interface Analysis,1, 2.CrossRefGoogle Scholar
  36. 36.
    D. C. Boyd and D. A. Thompson (1980).Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York), pp. 807–880.Google Scholar
  37. 37.
    The Corning Laboratory Catalogue (1988). (Corning Science Products, Corning, New York), p. T7.Google Scholar
  38. 38.
    P. Malachesky, R. Jasinski, and B. Burrow (1967).J. Electrochem. Soc.,114, 1104; S. Ya. Vasina, O. A. Petrii, and V. A. Safanov (1981).Elektrokhimiya 17, 270.CrossRefGoogle Scholar
  39. 39.
    T. Maoka and N. Enyo (1981).Electrochim. Acta,26, 607.CrossRefGoogle Scholar
  40. 40.
    J. M. Sherfey and A. Brenner (1958).J. Electrochem. Soc.,105, 665.CrossRefGoogle Scholar
  41. 41.
    A. J. Bard and L. R. Faulkner (1980).Electrochemical Methods (Chap. 3) (Wiley, New York).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • David Albagli
    • 1
  • Ron Ballinger
    • 3
    • 4
  • Vince Cammarata
    • 1
  • X. Chen
    • 2
  • Richard M. Crooks
    • 1
  • Catherine Fiore
    • 2
  • Marcel P. J. Gaudreau
    • 2
  • I. Hwang
    • 3
    • 4
  • C. K. Li
    • 2
  • Paul Linsay
    • 2
  • Stanley C. Luckhardt
    • 2
  • Ronald R. Parker
    • 2
  • Richard D. Petrasso
    • 2
  • Martin O. Schloh
    • 1
  • Kevin W. Wenzel
    • 2
  • Mark S. Wrighton
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridge
  2. 2.Plasma Fusion CenterMassachusetts Institute of TechnologyCambridge
  3. 3.Department of Nuclear EngineeringMassachusetts Institute of TechnologyCambridge
  4. 4.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations