Skip to main content
Log in

Characterization of vascular smooth muscle cell phenotype in long-term culture

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavoir, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concommitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altmansberger, M.; Osborn, M.; Schaver, A., et al. Antibodies to different intermediate filament proteins cell type specific markers on paraffin-embedded human tissues. Lab. Invest. 45: 427–434; 1981.

    Google Scholar 

  2. Barja, F.; Coughlin, C.; Belin, D., et al. Actin isoform synthesis and mRNA levels in quiescent and proliferating rat aortic smooth muscle cellsin vivo andin vitro. Lab. Invest. 55: 226–233; 1986.

    PubMed  CAS  Google Scholar 

  3. Bjorkerud, S.; Gustavsson, K.; Hasselgren, M. In vitro cultivation of rabbit aortic media and the development of the cultures in relation to cellular heterogeneity. Acta Pathol. Microbiol. Immunol. Scand. 92: 113–124; 1984.

    CAS  Google Scholar 

  4. Bowman, P. D.; Meek, R. L.; Daniel, C. W. Aging of human fibroblasts in vitro. Correlations between DNA synthetic ability and size. Exp. Cell Res. 93: 184–190; 1975.

    Article  PubMed  CAS  Google Scholar 

  5. Chamley-Campbell, J.; Campbell, G. R.; Ross, R. Smooth muscle cells in culture. Physiol. Rev. 59: 1–61; 1979.

    PubMed  CAS  Google Scholar 

  6. Clowes, A. W.; Schwartz, S. M. Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ. Res. 56: 139–145; 1985.

    PubMed  CAS  Google Scholar 

  7. Evans, R. M.; Fink, L. M. An alteration in the phosphorylation of vimentin-type intermediate filaments is associated with mitosis in cultured mammalian cells. Cell 29: 43–52; 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Folkow, B. Physiological aspects of primary hypertension. Physiol. Rev. 62: 347–504; 1982.

    PubMed  CAS  Google Scholar 

  9. Franke, W. W.; Schmid, E.; Osborn, M., et al. The intermediatesized filaments in rat kangaroo PtK2 cells. Cytobiologie 17: 392–411; 1978.

    PubMed  CAS  Google Scholar 

  10. Franke, W. W.; Schmid, E.; Vandekerckhove, J., et al. A permanently proliferating rat vascular smooth muscle cell with maintained expression of smooth muscle characteristics, including actin of the vascular smooth muscle type. J. Cell. Biol. 87: 594–600; 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Gabbiani, G.; Kocher, O.; Bloom, W. S., et al. Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J. Clin. Invest. 73: 148–152; 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Harmon, J. D.; Owen, W. G. Video densitometry using a 16-bit microcomputer. Biotechniques 4: 264–271; 1986.

    Google Scholar 

  13. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37: 614–636; 1965.

    Article  PubMed  CAS  Google Scholar 

  14. Kocher, O.; Gabbiani, G. Expression of actin mRNAs in rat aortic smooth muscle cells during development, experimental intimal thickening, and culture. Differentiation 32: 245–251; 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Kocher, O.; Gabbiani, G. Analysis of a smooth-muscle actin mRNA expression in rat aortic smooth-muscle cells using a specific cDNA probe. Differentiation 34: 201–209; 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Larson, D. M.; Fujiwara, K.; Alexander, R. W., et al. Myosin in cultured vascular smooth muscle cells: immunofluorescence and immunochemical studies of alterations in antigenic expression. J. Cell Biol. 99: 1582–1589; 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Lennette, D. A. An improved mounting medium for electron microscopy. Am. J. Clin. Pathol. 69: 647–648; 1978.

    PubMed  CAS  Google Scholar 

  18. Lowry, O. H.; Rosebrough N. J.; Farr, L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  19. O'Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007–4021; 1975.

    PubMed  Google Scholar 

  20. Owens, G. K.; Loeb, A.; Gordin, D., et al. Expression of smooth muscle-specific a-isoactin in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J. Cell Biol. 102: 343–352; 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Ross, R. Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components Arteriosclerosis 1: 293–311; 1981.

    PubMed  CAS  Google Scholar 

  22. Rovner, A. S.; Murphy, R. A.; Owens, G. K. Expression of smooth muscle and nonmuscle myosin heavy chains in cultured vascular smooth muscle cells. J. Biol. Chem. 261: 14740–14745; 1986.

    PubMed  CAS  Google Scholar 

  23. Sanford, K. K.; Earle, W. R.; Evans, V. J., et al. The measurement of proliferation in tissue cultures by enumeration of cell nuclei. JNCI 11: 773–795; 1951.

    PubMed  CAS  Google Scholar 

  24. Schwartz, S. M.; Campbell, G. R.; Campbell, J. H. Replication of smooth muscle cells in vascular disease. Circ. Res. 58: 427–444; 1986.

    PubMed  CAS  Google Scholar 

  25. Schaeffer, W. I. Proposed usage of animal tissue culture terms (revised 1978). Usage of vertebrate cell, tissue and organ culture terminology. In Vitro 15: 1649–1653; 1979.

    Google Scholar 

  26. Skalli, O.; Rapraz, P.; Trzeciak, A., et al. A monoclonal antibody against a-smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103: 2787–2796; 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Skalli, O.; Vandekerckhove, J.; Gabbiani, G. Actin-isoform pattern as a marker of normal or pathological smooth-muscle and fibroblastic tissues. Differentiation 33: 232–238; 1987.

    PubMed  CAS  Google Scholar 

  28. Warshaw, D. M.; McBride, W. J.; Work, S. S. Corkscrew-like shortening in single smooth muscle cells. Science 236: 1457–1459; 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Warshaw, D. M.; Mulvany, M. J.; Halpern, W. Mechanical and morphological properties of arterial resistance vessels in young and old spontaneously hypertensive rats. Circ. Res. 45: 250–259; 1979.

    PubMed  CAS  Google Scholar 

  30. Warshaw, D. M.; Szarek, J. L.; Hubbard, M. S., et al. Pharmacology and force development of single freshly isolated bovine carotid artery smooth muscle cells. Circ. Res. 58: 399–406; 1986.

    PubMed  CAS  Google Scholar 

  31. Woodcock-Mitchell, J. L.; Adler, K. B.; Low, R. B. Immunohistochemical identification of cell types in normal and in bleomycin-induced fibrotic rat lung. Am. Rev. Respir. Dis. 130: 910–916; 1984.

    PubMed  CAS  Google Scholar 

  32. Wray, W.; Boulikas, T.; Wray, V., et al. Silverstaining of proteins in polyacrylamide gels. Anal. Biochem. 118: 197–203; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from from National Institutes of Health, Bethesda, MD, to DMW (HL35684), JW (HL36412), and JM and RL (SCOR HL 14212).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Absher, M., Woodcock-Mitchell, J., Mitchell, J. et al. Characterization of vascular smooth muscle cell phenotype in long-term culture. In Vitro Cell Dev Biol 25, 183–192 (1989). https://doi.org/10.1007/BF02626176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02626176

Key words

Navigation