Skip to main content
Log in

Influence of branched-chain amino acid composition of culture media on the synthesis of plasma proteins by serum-free cultured rat hepatocytes

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Supplementation of Ham's F12 culture medium with essential amino acids (EAA) up to the rat plasma levels increased the rates of synthesis of albumin and transferrin by cultured rat hepatocytes by 1.3 and 1.7, respectively. Fifty percent of this increase could be attributed to three of the EAA: the branched-chain amino acids (BCAA: Leu Ile and Val). Non-branched-chain essential amino acids (non-BC-EAA) stimulated only 25% of the increase produced by the whole EAA mixture. When each EAA was tested individually, none of them caused an appreciable increase in albumin and transferrin in culture medium. When the concentrations of all EAA were raised to rat postprandial portal levels, albumin and transferrin synthesis rates reached a maximum, increasing by 3.2 and 3.5, respectively. Supplementation with BCAA at postprandial portal concentrations increased albumin and transferrin synthesis rates by 2.2 and 2.0, respectively, and had no noteworthy effect on the synthesis of cellular proteins. Non-BC-EAA at their postprandial portal concentrations increased albumin and transferrin synthesis rates by 1.7 and 1.9, respectively. Supplementation with alanine to reach a nitrogen content equal to that of the modified EAA-enriched medium had no stimulatory effect. Our results show that EAA have a specific effect on the synthesis of plasma proteins by cultured hepatocytes, and that BCAA at physiologic concentrations account for the major part of this stimulatory effect. Consequently, EAA and particularly BCAA concentration should be elevated in serum-free nutrient media to sustain maximum plasma protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry, M. N.; Friend, D. S. High yield preparation of isolated rat liver parenchymal cells. J. Cell Biol. 43:506–520; 1969.

    Article  PubMed  CAS  Google Scholar 

  2. Castell, J. V.; Gómez-Lechón, M. J.; Coloma, J., et al. Preservation of adult functionality of hepatocytes in serum-free cultures. In: Fischer, G.; Wieser, R. J., eds. Hormonally defined media. A tool in cell biology. Berlin: Springer Verlag; 1984:333–336.

    Google Scholar 

  3. Castell, J. V.; Montoya, A.; Larrauri, A., et al. Effects of benorylate and impacina on the metabolism of cultured hepatocytes. Xenobiotica 15:743–749; 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Gómez-Lechón, M. J.; Castell, J. V. Efficiency of phylogenetically unrelated plasma fibronectins on hepatocyte attachment to substrata. Cienc. Biol. 8:49–56; 1983.

    Google Scholar 

  5. Gómez-Lechón, M. J.; López, M. P.; Castell, J. V. Biochemical functionality and recovery of hepatocytes after deep freezing storage. In Vitro 20:826–832; 1984.

    Article  PubMed  Google Scholar 

  6. Grinde, B.; Seglen, P. O. Leucine inhibition of autophagic vacuole formation in isolated rat hepatocytes. Exp. Cell Res. 134:33–39; 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Harper, A. E.; Miller, R. H.; Block, K. P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 4:409–454; 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Ichiara, A.; Nakamura, T.; Tanaka, K. Use of hepatocytes in primary culture for biochemical studies on liver functions. Mol. Cell. Biochem. 43:145–160; 1982.

    Google Scholar 

  9. Ledford, B. E.; Jacobs, D. F. Translation kinetics in cultured mouse hepatoma cells. Regulation of albumin synthesis by amino acids. Eur. J. Biochem. 152:611–618; 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Lowry, P. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  11. Maher, T. H. Plasma branched chain amino acids as regulators of brain neurotransmitters. In: Adibi, S. A.; Fekl, W.; Langenbeck, U., et al., eds. Branched chain amino and keto acids in health and disease. Basel: Karger; 1984:242–259.

    Google Scholar 

  12. Montoya, A.; Gómez-Lechón, M. J.; Castell, J. V. Plasma protein synthesis by serum-free cultured hepatocytes. Role of amino acid composition of the medium. In Vitro 21:26A; 1985.

    Google Scholar 

  13. Mortimore, G. E.; Pösö, A. R. Lysosomal pathways in hepatic protein degradation: regulatory role of amino acids. Fed. Proc. 43:1289–1294; 1984.

    PubMed  CAS  Google Scholar 

  14. Rémésy, C.; Demigne, C.; Aufrére, J. Inter-organ relationships between glucose, lactate and amino acids in rats fed on highcarbohydrate or high-protein diet. Biochem. J. 170:321–329; 1978.

    Google Scholar 

  15. Schwarze, P. E.; Seglen, P. O. Protein metabolism and survival of rats hepatocytes in early culture. Exp. Cell Res. 130:185–190; 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Schwarze, P. E.; Solheim, A. E.; Seglen, P. O. Amino acid and energy requirements for rat hepatocytes in primary culture. In Vitro 18:43–54; 1982.

    PubMed  CAS  Google Scholar 

  17. Seglen, P. O. Protein-catabolic state of isolated rat hepatocytes. Biochim. Biophys. Acta. 496:182–191; 1977.

    PubMed  CAS  Google Scholar 

  18. Seglen, P. O.; Gordon, P. B.; Poli, A. Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochim. Biophys. Acta. 630:103–118; 1980.

    PubMed  CAS  Google Scholar 

  19. Seglen, P. O.; Solheim, A. E. Effects of aminooxyacetate, alanine and other amino acids on protein synthesis in isolated rat hepatocytes. Biochim. Biophys. Acta. 520:630–641; 1978.

    PubMed  CAS  Google Scholar 

  20. Shotwell, M. A.; Kilberg, M. S.; Oxender, D. L. The regulation of neutral amino acid transport in mammalian cells. Biochim. Biophys. Acta. 737:267–284; 1983.

    PubMed  CAS  Google Scholar 

  21. Smith, J. E.; Lunn, P. G. Albumin-synthesizing capacity of hepatocytes isolated from rats fed diets differing in protein and energy content. Ann. Nutr. Metab. 28:281–287; 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Tanaka, K.; Ichiara, A. Different effects of amino acid deprivation on synthesis of intracellular and extracellular proteins in rat hepatocytes in primary culture. J. Biochem. 94:1339–1348; 1983.

    PubMed  CAS  Google Scholar 

  23. Tanaka, K.; Kishi, K.; Ichiara, A. Biochemical studies on liver functions in primary cultured hepatocytes of adult rats. II. Regulation of protein and amino acid metabolism. J. Biochem. 86:863–870; 1979.

    PubMed  CAS  Google Scholar 

  24. Weigand, K.; Wernze, H.; Falge, C. Synthesis of angiotensinogen by isolated rat liver cells and its regulation in comparison to serum-albumin. Biochem. Biophys. Res. Com. 75:102–110; 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montoya, A., Gómez-Lechón, M.J. & Castell, J.V. Influence of branched-chain amino acid composition of culture media on the synthesis of plasma proteins by serum-free cultured rat hepatocytes. In Vitro Cell Dev Biol 25, 358–364 (1989). https://doi.org/10.1007/BF02624599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624599

Key words

Navigation