Skip to main content
Log in

Human sweat duct cells in primary culture. Basic bioelectric properties of cultures derived from normals and patients with cystic fibrosis

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Human sweat duct cells from the coiled reabsorptive segment have been cultured successfully, free from fibroblasts, in a low serum, hormone-supplemented medium. Ham's F12. The cultured cells exhibited a typical epithelial cobblestone pattern and microvilli-covered luminal cells were seen joined together with typical junctional complexes. In cultures derived from normals and patients with cystic fibrosis (CF), growth and morphologic characteristics were indistinguishable. When grown on a membranous support, and mounted in an Ussing chamber, vectorial electroconductive ion-transport could be identified. The epithelial preparations produced active mucosa to serosa-directed sodium flux via amiloride-sensitive, apical sodium channels and ouabain-sensitive sodium pumps located in the basolateral membrane, which also contained a potassium shunt. These findings are consistent with a polarized epithelium with properties similar to the intact organ. High transepithelial resistance and increased amiloride sensitivity were typical for cells derived from CF, indicating that principal normal as well as pathologic properties of the sweat duct are preserved in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cereijido, M.; Rotunno, C. A.; Robbins, E. S., et al. Polarized epithelial membranes produced in vitro. In: Hoffman, J. F., ed. Membrane transport processes, vol. 1. New York: Raven Press; 1977:433–461.

    Google Scholar 

  2. Misfeldt, D. S.; Hamamoto, S. T.; Pitelka, D. R. Transepithelial transport in cell culture. Proc. Natl. Acad. Sci. USA 73:1212–1216; 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Handler, J. S.; Steele, R. E.; Sahib, M., et al. Toad urinary bladder in cell culture: maintenance of epithelial structure, sodium transport and response to hormones. Proc. Natl. Acad. Sci. USA 76:4151–4155; 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Bisbee, C. A. Prolactin effects on ion transport across cultured mouse mammary epithelium. Am. J. Physiol. 240:C110-C115; 1981.

    PubMed  CAS  Google Scholar 

  5. Ussing, H. H.; Zerahn, K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23:110–127; 1951.

    Article  PubMed  CAS  Google Scholar 

  6. Thaysen, J. H.; Schwartz, I. L. Excretion of sodium and potassium in human sweat. J. Clin. Invest. 35:114–120; 1956.

    PubMed  Google Scholar 

  7. Di Sant'Agnese, P. A.; Darling, R. C.; Perera, G. A., et al. Sweat electrolyte disturbances associated with childhood pancreatic disease. Am. J. Med. 15:777–784; 1953.

    Article  Google Scholar 

  8. Sato, K. The physiology, pharmacology and biochemistry of the eccrine sweat gland. Reviews of physiology, biochemistry and pharmacology. 79:51–131; 1977.

    PubMed  CAS  Google Scholar 

  9. Quinton, P. M. Chloride impermeability in cystic fibrosis. Nature 301:421–422; 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Schulz, I.; Ullrich, K. J.; Fromter, E., et al. Micropunction und elektrische potential messung an sweissdrusen des menchen. Pflug. Arch. 284:360–372; 1965.

    Article  Google Scholar 

  11. Pedersen, P. S. Primary culture of epithelial cells derived from the reabsorptive coiled duct of human sweat glands. IRCS Med. Sci. 12:752–753; 1984.

    Google Scholar 

  12. Pedersen, P. S.; Larsen, E. H.; Hainau, B., et al. Trasepithelial ion transport in sweat duct cell cultures derived from normals and patients with cystic fibrosis. Med. Sci. Res. 15:1009–1016; 1987.

    Google Scholar 

  13. Munger, B. L. The ultrastructure and histophysiology of human sweat glands. J. Biophys. Biochem. Cytol. 11:385–402; 1961.

    Article  PubMed  CAS  Google Scholar 

  14. Yankaskas, J. R.; Cotton, C. U.; Knowles, M. R., et al. Culture of human nasal epithelial cells on collagen matrix support. Am. Rev. Respir. Dis. 132:1281–1287; 1985.

    PubMed  CAS  Google Scholar 

  15. Cereijido, M.; Robbins, E. S.; Dolan, W. J., et al. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell. Biol. 77:853–880; 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Widdicombe, J. H.; Welsh, M. J.; Finkbeiner, W. E. Cystic fibrosis decreases the apical membrane chloride permeability of monolayers cultured from cells of tracheal epithelium. Proc. Natl. Acad. Sci. USA 82:6167–6171; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Cotton, C. U.; Stutts, M. J.; Knowles, M. R., et al. Abnormal apical cell membrane in cystic fibrosis respiratory epithelium. J. Clin. Invest. 79:80–85; 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Guggino, S. E.; Guggino, S. E.; Green, N., et al. Blocking agents of calcium-activated K+-channels in cultured medullary thick ascending limb cells. Am. J. Physiol. 252:C128-C137; 1987.

    PubMed  CAS  Google Scholar 

  19. Bisbee, C. A. Prolactin effects on ion transport across cultured mouse mammary epithelium. Am. J Physiol. 240:C110-C115; 1981.

    PubMed  CAS  Google Scholar 

  20. Boucher, R. C.; Larsen, E. H. Comparison of ion transport by cultured secretory and absorptive canine airway epithelia. Am. J. Physiol. 254:C535-C547; 1988.

    PubMed  CAS  Google Scholar 

  21. Yankaskas, J. R.; Cotton, C. U.; Knowles, M. R., et al. Culture of human nasal epithelial cells on collagen matrix support. Am. Rev. Respir. Dis. 132:1281–1287; 1985.

    PubMed  CAS  Google Scholar 

  22. Steele, R. E.; Preston, A. S.; Johnson, J. P., et al. Porous-bottom dishes for culture of polarized cells. Am. J. Physiol. 251:C136-C139; 1986.

    PubMed  CAS  Google Scholar 

  23. Widdicombe, J. H. Cystic fibrosis and beta-adrenergic response of airway epithelial cell culture. Am. J. Physiol. 251:R818-R822; 1986.

    PubMed  CAS  Google Scholar 

  24. Furie, M. B.; Cramer, E. B.; Naprstek, B. L., et al. Cultured endothelial cell monolayer that restrict the transendothelial passage of macromolecules and electrical current. J. Cell Biol. 98:1033–1041; 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Rutten, M.; Rattner, D.; Silen, W. Transepithelial transport of guinea pig gastric mucosus cell monolayer. Am. J. Physiol. 249:C503-C513; 1985.

    PubMed  CAS  Google Scholar 

  26. Dharmsathaphorn, K.; McRoberts, J. A.; Mandel, K. G., et al. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am. J. Physiol. 246:G204-G208; 1984.

    PubMed  CAS  Google Scholar 

  27. Rehm, W. S. Ion permeability and electrical resistance of the frog's gastric mucosa. Fed. Proc. 26:1303–1313; 1967.

    PubMed  CAS  Google Scholar 

  28. Iwatsuki, N.; Petersen, O. H. Inhibition pf Ca++-activated K+ channels in pig pancreatic acinar cells by Ba2+, Ca2+, quinine and quinidine. Biochem. Biophys. Acta 819:249–257; 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Petersen, O. H. Electrophysiology of the pancreas. Physiol. Rev. 67:1054–1116; 1987.

    PubMed  CAS  Google Scholar 

  30. Coleman, D. L.; Tuet, I. T.; Widdicombe, J. H. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am. J Physiol. 246:C355-C359; 1984.

    PubMed  CAS  Google Scholar 

  31. Sato, T.; Sato, M.; Hudson, E. A., et al. Characterization of bovine pancreatic ductal cells isolated by a perfusion-digestion technique. In Vitro 19:651–660; 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Friedman, E. A.; Higgins, P. J.; Lipkin, M., et al. Tissue culture of human epithelial cells from benign colonic tumors. In Vitro. 17:632–644; 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Kealey, T. The metabolism and hormonal responses of human eccrine sweat glands isolated by collagenase digestion. Biochem. J. 212:143–148; 1983.

    PubMed  CAS  Google Scholar 

  34. Okada, N.; Kitano, Y.; Morimoto, T. Isolation of a viable eccrine sweat gland by dispase. Arch. Dermatol. Res. 275:130–133; 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Sato, K.; Saga, K.; Sato, F. Membrane transport and intracellular events in control and cystic fibrosis eccrine sweat glands. In: Mastella, G.; Quinto, P. M., eds. Cellular and molecular basis of cystic fibrosis. San Francisco: San Francisco Press; 1988:171–185.

    Google Scholar 

  36. Jones, C. J. Electrophysiological and dye-coupling studies on cell types in eccrine sweat glands isolated from normal subjects and patients with cystic fibrosis: the pursuit of cell signatures. In: Mastella, G.; Quinton, P. M., eds. Cellular and molecular basis of cystic fibrosis. San Francisco: San Francisco Press; 1988:115–123.

    Google Scholar 

  37. Pedersen, P. S.; Brandt, N. J.; Larsen, E. H. Qualitatively abnormal beta-adrenergic response in cystic fibrosis sweat duct cell culture. IRCS Med. Sci. 14:701–702; 1986.

    Google Scholar 

  38. Knowles, M.; Gatzy, J.; Boucher, R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N. Engl. J. Med. 305:1489–1495; 1981.

    Article  PubMed  CAS  Google Scholar 

  39. Quinton, P. M.; Bijman, J. Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N. Engl. J. Med. 308:1185–1189; 1983.

    Article  PubMed  CAS  Google Scholar 

  40. Quinton, P. M. Missing chloride conductance in cystic fibrosis. Am. J. Physiol. 251:C649-C652; 1986.

    PubMed  CAS  Google Scholar 

  41. Reddy, M. M.; Quinton, P. M. Cl permeability of sweat duct cell membranes: intracellular microelectrode analysis. Prog. Clin. Biol. Res. 254:45–47; 1987.

    PubMed  CAS  Google Scholar 

  42. Pedersen, P. S. Cellular mechanism of cholinergic action in epithelial cell cultures derived from the human reabsorptive sweat duct. Prog. Clin. Biol. Res. 254:151–165; 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Financial support was provided by CF Foundation USA (G1397-01), SLF, Ville Heyse, Haensch, Nationalforeningen, Winthertur, Novo, and Egmont Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, P.S. Human sweat duct cells in primary culture. Basic bioelectric properties of cultures derived from normals and patients with cystic fibrosis. In Vitro Cell Dev Biol 25, 342–352 (1989). https://doi.org/10.1007/BF02624597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624597

Key words

Navigation