Skip to main content
Log in

Role of different epithelial cell types in liver ontogenesis, regeneration and neoplasia

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Baranov, V. N.; Engelhardt, N. V.; Lazareva, M. N.; Goussev, A. I.; Jazova, A. K.; Shakhlamov, V. A.; Abelev, G. I. Atypical α-fetoprotein synthesizing cells in the mouse regenerating liver. Biul. Eksp. Biol. Med. 94:82–84; 1982.

    CAS  PubMed  Google Scholar 

  2. Baribault, H.; Leroux-Nicollet, I.; Marceau, N. Differential responsiveness of cultured suckling and adult rat hepatocytes to growth-promoting factors: entry into S phase and mitosis. J. Cell. Physiol. 122:105–112; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Baribault, H.; Marceau, N. Dexamethasone and dimethylsulfoxide as distinct regulators of growth and differentiation of cultured suckling rat hepatocytes. J. Cell. Physiol. 129: 77–84; 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Bélanger, L.; Baril, P.; Guertin, M.; Gingras, M. C.; Gourdeau, H.; Anderson, A.; Hamel, D.; Boucher, J. M. Oncodevelopmental and hormonal regulation of α-fetoprotein gene expression. Weber, G. ed. Advances in enzyme regulation. Vol. 21, New York: Pergamon Press; 1983: 73–99.

    Google Scholar 

  5. Braun, L.; Goyette, M.; Yaswen, P.; Thompson, N. L.; Fausto, N. Growth in culture and tumorigenicity after transfection with the ras oncogene of liver epithelial cells from carcinogen-treated rats. Cancer Res. 47:4116–4124; 1987.

    PubMed  CAS  Google Scholar 

  6. Braun, L.; Mikumo, R.; Fausto, N. Deregulated expression of c-myc is a late step in liver cell tumorigenesis. Cancer Res. in press.

  7. Bucher, N. L. R.; Patel, V.; Cohen, S. Hormonal factors concerned with liver regeneration. Ciba Foundation Symposium No. 55, Hepatotrophic Factors, Amsterdam: Elsevier/Excerpta Medica/North-Holland; 1978:95–107.

    Google Scholar 

  8. Bucher, N. L. R.; McGowan, J. A. Regulatory mechanisms in liver regeneration. Wright, R.; Alberti, G. G. M. M.; Karsan, S.; Millward-Sadler, H. eds. Liver and biliary disease: a pathophysiological approach. Philadelphia: W. B. Saunders, Co.; 1979:210–227.

    Google Scholar 

  9. Chessebeuf, M.; Olsson, A.; Bournot, P.; Desgres, J.; Guiguet, M.; Maume, G.; Maume, B. F.; Perissel, B.; Padieu, P. Long term cell culture of rat liver epithelial cells retaining some hepatic functions. Biochimie, 56:1365–1379; 1974.

    Article  PubMed  CAS  Google Scholar 

  10. Dadoune, J. P. Contribution à l'étude au microcope électronique de la différenciation de la cellule hépatique chez le rat. Arch. Anat. Morph. Exp. 52:513–565; 1963.

    Google Scholar 

  11. Daoust, R. Brauer, R. E. ed. Liver function. American Institute Biological Science: Waverly Press; 1958:3–22.

  12. Deschênes, J.; Valet, J. P.; Marceau, N. The relationship between cell volume, ploidy, and functional activity in differentiating hepatocytes. Cell Biophys. 3:321–334; 1981.

    PubMed  Google Scholar 

  13. Dempo, K.; Chisaka, N.; Yoshida, Y.; Kaneko, A.; Onoe, T. Immunofluorescent study on α-fetoprotein-producing cells in the early stage of 3′-methyl-4-dimenthylaminoazobenzene carcinogenesis. Cancer Res. 35:1282–1287; 1975.

    PubMed  CAS  Google Scholar 

  14. Dunsford, H. A.; Maset, R.; Salman, J.; Sell, S. Connection of ducklike structures induced by a chemical hepatocarcinogen to portal bile ducts in the rat liver detected by injection of bile ducts with a pigmented barium gelatin medium. Am. J. Pathol. 118:218–224; 1985.

    PubMed  CAS  Google Scholar 

  15. Dunsford, H. A.; Karnasuta, C.; Sell, S. Monoclonal antibodies to preneoplastic liver cells to identify a common epithelial cell precursor of developing rat liver and bile ducts. Proc. A. A. C. R. 29:40; 1988.

    Google Scholar 

  16. Engelhardt, N. V.; Baranov, W. N.; Lazareva, M. N.; Goussev, A. I. Ultrastructural localization of α-fetoprotein in regenerating mouse liver poisoned with CCl4. Histochemistry 80:401–407; 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Evarts, R. P.; Nagy, P.; Marsden, E.; Thorgeirsson, S. S. A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis (Lond.) 8:1737–1740; 1987.

    Article  CAS  Google Scholar 

  18. Farber, E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylaminofluorene, and 3′-methyl-4-dimethylaminoazobenzene. Cancer Res. 16:142–149; 1956.

    PubMed  CAS  Google Scholar 

  19. Farber, E. The multistep nature of cancer development. Cancer Res. 44:4217–4223; 1984.

    PubMed  CAS  Google Scholar 

  20. Faris, R. A.; Allison, J. P.; Hixson, D. C. Phenotypic differences in hepatic nodules (HN) inducedby the resistent hepatocyte and ethionine model systems in the rat. Proc. A. A. C. R. 27:96; 1986.

    Google Scholar 

  21. Faris, R. A.; Hixson, D. C. Expression of tumor-associated antigens (TAA) by a subpopulation of hepatic nodules (HN) induced by the Solt/Farber (S/F) protocol. Proc. A. A. C. R. 29:141; 1988.

    Google Scholar 

  22. Fausto, N.; Shank, P. R. Oncogene expression in liver regeneration and hepatocarcinogenesis. Hepatology 3:1016–1023; 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Fausto, N.; Thompson, N. L.; Braun, L. Purification and culture of oval cells from rat liver. Pretlow, II, T. G.; Pretlow, T. P. eds., Cell separation. Methods and selected applications, chap. 3. New York: Academic Press; 1987; 45–77.

    Google Scholar 

  24. Franke, W. W.; Schmid, E.; Kartenbeck, J.; Mayer, D.; Hacker, H. J.; Bannash, P.; Osborn, M.; Weber, K.; Denk, H.; Wanson, J. C.; Drochmans, P. Characterization of the intermediate-sized filaments in liver cells by immunofluorescence and electron microscopy. Biol. Cell 34:99–110; 1979.

    Google Scholar 

  25. Fukurama, K.; Shimada, T.; England, P.; Mochizuki, Y.; Williams, G. M. Enrichment and characterization of clonogenic epithelial cells from adult rat liver and initiation of epithelial cell strains. In Vitro 23:339–348; 1987.

    Google Scholar 

  26. Germain, L.; Goyette, R.; Marceau, N. Differential cytokeratin and α-fetoprotein expression in morphologically distinct epithelial cells emerging at the early stage of rat hepatocar-cinogenesis. Cancer Res. 45:673–681; 1985.

    PubMed  CAS  Google Scholar 

  27. Germain, L.; Noel, M.; Gourdeau, H.; Marceau, N. Promotion of growth and differentiation of rat ductular oval cells in primary culture. Cancer Res. 48:368–378; 1988.

    PubMed  CAS  Google Scholar 

  28. Germain, L.; Blouin, M. J.; Marceau, N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, α-fetoprotein, albumin, and cell surface-exposed components. Cancer Res. 48:4909–4918; 1988.

    PubMed  CAS  Google Scholar 

  29. Greaves, M. F. Differentiation-linked leukemogenesis in lymphocytes. Science 234:697–704; 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Greengard, O.; Federman, M.; Knox, W. E. Cytomorphometry of developing rat liver and its application to enzymic differentiation. J. Cell Biol. 52:261–272; 1972.

    Article  PubMed  CAS  Google Scholar 

  31. Grisham, J. W.; Porta, E. A. Origin and fate of proliferated ductal cells in the rat: electron microscopic and autoradiographic studies. Exp. Mol. Pathol. 3:242–261; 1964.

    Article  Google Scholar 

  32. Grisham, J. W. Cell types in long term propagable cultures of rat liver. Ann. N. Y. Acad. Sci. 349:128–137; 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Grisham, J. W. Cell types in rat liver cultures: their identification and isolation. Mol. Cell. Biochem. 53/54:22–33; 1983.

    Article  Google Scholar 

  34. Gugen-Guillouzo, C.; Clement, B.; Baffet, G.; Beaumont, C.; Morel-Chany, E.; Glaise, D.; Guillouzo, A. Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type. Exp. Cell Res. 143:47–54; 1983.

    Article  Google Scholar 

  35. Gugen-Guillouzo, C. Role of homotypic and heterotypic cell interactions in expression of specific functions by cultured hepatocytes. Guillouzo, A.; Gugen-Guillouzo, C. eds. Research in isolated and cultured hepatocytes. London: John Libbey Eurotext Ltd; 1986:259–283.

    Google Scholar 

  36. Guillouzo, A.; Delers, F.; Clement, B.; Bernard, N.; Engler, R. Long term production of acute-phase proteins by adult rat hepatocytes co-cultured with another liver cell type in serum-free medium. Biochem. Biophys. Res. Commun. 120:237–248; 1980.

    Google Scholar 

  37. Hakomori, S. H. Glycosphingolipids as differentiation-dependent, tumor-associated markers and as regulators of cell proliferation. Trends Biochem. Sci. 9:453–456; 1984.

    Article  CAS  Google Scholar 

  38. Herring, A. S.; Raychauduri, R.; Kellev, S. P.; Iype, T. P. Repeated establishment of diploid epithelial cell cultures from normal and partially hepatectomized rats. In Vitro 19:576–588; 1983.

    Article  Google Scholar 

  39. Hixson, D. C.; Allison, J. P.; Chesner, J. E.; Leger, M. J.; Ridge, L. L.; Walborg, E. F. Jr. Characterization of a family of glycoproteins associated with the bile canalicular membrane of normal hepatocytes but not expressed by two transplantable rat hepatocellular carcinomas. Cancer Res. 43:3874–3884; 1983.

    PubMed  CAS  Google Scholar 

  40. Hixson, D. C.; Allison, J. P. Monoclonal antibodies recognizing oval cells induced in the liver of rats by N-2-fluorenyl acetamide or ethionine in a choline-deficient diet. Cancer Res. 45:3750–3760; 1985.

    PubMed  CAS  Google Scholar 

  41. Hixson, D. C.; McEntire, K.; Chesner, J.; Faris, R.; Weltman, J.; Marceau, N. Monoclonal antibody (MAb) recognizing a glycoprotein absent from normal tissues but present on transplantable (THC) and primary (PHC) hepatocellular carcinomas induced by azo dye. Proc. A. A. C. R. 27: 365; 1986.

    Google Scholar 

  42. Houssaint, E. Differentiation of mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ. 9:269–279; 1980.

    Article  PubMed  CAS  Google Scholar 

  43. Inaoka, Y. Significance of the so-called oval cell proliferation during azo-dye hepatocarcinogenesis. Gann 58:355–366; 1967.

    PubMed  CAS  Google Scholar 

  44. Isom, H. C.; Secott, T.; Georgoff, I.; Woodworth, C.; Mummaw, J. Maintenance of differentiated rat hepatocytes in primary culture. Proc. Natl. Acad. Sci. USA 82:3252–3256; 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Karnasuta, C.; Sell, S.; Dunsford, H. A. Monoclonal analysis of the early stages of the Solt-Farber regimen of carcinogenesis in rats. Proc. Amer. Ass. Cancer Res. 29:83; 1988.

    Google Scholar 

  46. Knook, D. L.; Hollander, C. F. Embryology and aging of the rat liver. Newberne, P. M.; Butler, W. H. eds. Rat hepatic neoplasis. Cambridge: The MIT Press; 1978: 9–40.

    Google Scholar 

  47. Kuhlmann, W. D. Localization of alpha1-fetoprotein and DNA synthesis in the liver cell populations during experimental hepatocarcinogenesis in rats. Int. J. Cancer 21:368–380; 1978.

    Article  PubMed  CAS  Google Scholar 

  48. Kuhlmann, W. D. Alpha-fetoprotein: cellular origin of a biological marker in rat liver under various experimental conditions. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 393:9–26; 1981.

    CAS  Google Scholar 

  49. Lazarides, E. Intermediate filaments: a chemically heterogenous, developmentally regulated class of proteins. Ann. Rev. Biochem. 51:219–250; 1982.

    Article  PubMed  CAS  Google Scholar 

  50. Marceau, N.; Robert, A.; Mailhot, D. The major surface protein of epithelial cells from newborn and adult rat livers in primary cultures. Biochem. Biophys. Res. Commun. 75:1092–1097, 1977.

    Article  PubMed  CAS  Google Scholar 

  51. Marceau, N.; Goyette, R.; Deschênes, J.; Valet, J. P. Morphological differences between epithelial and fibroblast cells in rat liver cultures, and the roles of cell surface fibronectin and cytoskeletal element organization in cell shape. Ann. NY Acad. Sci. 349:138–152; 1980.

    Article  PubMed  CAS  Google Scholar 

  52. Marceau, N.; Deschênes, J.; Valet, J. P. Effect of hepatocyte proliferation and neoplastic transformation on alpha-fetoprotein (AFP) and albumin (ALB) production per cell. Influence of cell specialization and cell size. Oncodevelop. Biol. Med. 3:49–63; 1982.

    CAS  Google Scholar 

  53. Marceau, N.; Baribault, H.; Leroux-Nicollet, I. Dexamethasone can modulate the synthesis and organization of cytokeratin in cultured differentiating rat hepatocytes. Can. J. Biochem. Cell Biol. 63:448–457; 1985.

    PubMed  CAS  Google Scholar 

  54. Marceau, N.; Germain, L.; Goyette, R.; Noel, M.; Gourdeau, H. Cell of origin of distinct cultured rat liver epithelial cells, as typed by cytokeratin and surface component selective expression. Biochem. Cell Biol. 64:788–802; 1986.

    Article  PubMed  CAS  Google Scholar 

  55. Martin, E.; Feldmann, G. Embryologie-Anatomie. Méthodes d'étude macroscopique. Malpositions et malformations. Masson ed. Histopathologie du foie et des voies biliaires. New York; 1983: 1–7.

  56. McGowan, J. A. Hepatocyte proliferation in culture. Guillouzo, A.; Gugen-Guillouzo, C. eds. Research in isolated and cultured hepatocytes. London: John Libbey Eurotext Ltd.; 1986:13–38.

    Google Scholar 

  57. Michalopoulos, G. K.; Strom, S. C.; Jirtle, R. L. Use of hepatocytes for studies of mutagenesis and carcinogenesis. Guillouzo, A.; Gugen-Guillouzo, C. eds. Research in isolated and cultured hepatocytes. London: John Libbey Eurotext Ltd; 1986: 333–352.

    Google Scholar 

  58. Onoe, T.; Dempo, K.; Kaneko, A.; Watabe, H. Significance of α-fetoprotein appearance in the early stage of azo-dye carcinogenesis. Gann Monogr. 14: 233–244; 1973.

    Google Scholar 

  59. Osborn, M.; Weber, K. Intermediate filaments: cell-type specific markers in differentiation and pathology. Cell 31:303–306; 1982.

    Article  PubMed  CAS  Google Scholar 

  60. Parsa, I.; Flancbaum, L. Long term organ culture of rat liver rudiment in a synthetic medium: morphological and biochemical development. Dev. Biol. 46:120–131; 1975.

    Article  PubMed  CAS  Google Scholar 

  61. Petropoulos, C. J.; Yaswen, P.; Penzica, M.; Fausto, N. Cell lineages in liver carcinogenesis: possible clues from studies of the distribution of α-fetoprotein RNA sequences in cell populations isolated from normal, regenerating and preneoplastic rat liver. Cancer Res. 45:5762–5768; 1985.

    PubMed  CAS  Google Scholar 

  62. Pitot, H. C.; Sirica, A. E. The stages of initiation and promotion in hepatocarcinogenesis. Biochim. Biophys. Acta 605:191–215; 1980.

    PubMed  CAS  Google Scholar 

  63. Schmid, E.; Tascott, S.; Bennett, G. S.; Croop, J.; Fellini, S. A.; Holtzer, H.; Franke, W. W. Differential location of different types of intermediate-sized filaments in various tissues of the chicken embryo. Differentiation (Berlin) 15:27–40; 1979.

    Article  CAS  Google Scholar 

  64. Sell, S.; Leffert, H. L. An evaluation of cellular lineages in the pathogenesis of experimental hepatocellular carcinoma. Hepatology 2:77–86; 1982.

    Article  PubMed  CAS  Google Scholar 

  65. Sell, S. Comparison of oval cells induced in rat liver by feeding N-2-fluorenylacetamide in a choline-devoid diet and bile duct cells induced by feeding 4,4′-diaminodiphenylmethane. Cancer Res. 43:1761–1767; 1983.

    PubMed  CAS  Google Scholar 

  66. Sell, S.; Salmon, J. Light and electron microscopic autoradiographic analysis of proliferating cells during the early stages of chemical hepatocarcinogenesis in the rat induced by feeding N-2-fluorenylacetamide in a choline deficient diet. Am. J. Pathol. 114:287–300; 1984.

    PubMed  CAS  Google Scholar 

  67. Shiojiri, N. Analysis of differentiation of hepatocytes and bile duct cells in developing mouse liver by albumin immunofluorescence. Dev. Growth Differ. 26:555–561; 1984.

    Article  Google Scholar 

  68. Tsao, M. S.; Smith, J. D.; Nelson, K. G.; Grisham, J. W. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of “oval” cells. Exp. Cell Res. 154:38–52; 1984.

    Article  PubMed  CAS  Google Scholar 

  69. Tsao, M. S.; Earp, H. S.; Grisham, J. W. The effects of epidermal growth factor and the state of confluence on enzymatic activities of cultured rat liver epithelial cells. J. Cell. Physiol. 126:167–173; 1986.

    Article  PubMed  CAS  Google Scholar 

  70. Williams, G. M. The pathogenesis of rat liver cancer caused by chemical carcinogens. Biophys. Biochim. Acta 605:167–189; 1980.

    CAS  Google Scholar 

  71. Yaswen, P.; Hayner, N. T.; Fausto, N. Isolation of oval cells by centrifugal elutriation and comparison with other cell types purified from normal and preneoplastic livers. Cancer Res. 44:324–331; 1984.

    PubMed  CAS  Google Scholar 

  72. Yokoyama, S.; Satoh, M.; Lombardi, B. Bile ductular cells and the phenotypic heterogeneity of the population of hepatic non-parenchymal epithelial cells induced in rats by chemical carcinogens. Phenotype of NPE cells induced by chemical carcinogens. Oxford, England: IRL Press. Ltd; 1986: 1215–1219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported by the National Cancer Institute of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marceau, N., Blouin, MJ., Germain, L. et al. Role of different epithelial cell types in liver ontogenesis, regeneration and neoplasia. In Vitro Cell Dev Biol 25, 336–341 (1989). https://doi.org/10.1007/BF02624596

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624596

Keywords

Navigation