Skip to main content

Influence of initial collagen and cellular concentrations on the final surface area of dermal and skin equivalents: A box-behnken analysis

Summary

Our laboratory has been involved in finding optimal conditions for producing dermal and skin equivalents. As an original approach, a Box-Behnken experimental design was used to study the effects of the initial collagen and fibroblast concentrations and the initial gel thickness on the contraction of dermal and skin equivalents. The final surface area of dermal equivalent varied significantly with the initial concentration of collagen and fibroblast, whereas the initial thickness of gel had no appreciable effect on the contraction of the dermal equivalent. When keratinocytes were grown on these dermal equivalents they produced a very severe contraction, to an extent that all skin equivalents had a similar final surface area. This severe contraction was independent of collagen and fibroblast concentrations. Models for the prediction of the final percentage contraction of dermal and skin equivalents as a function of the initial concentration of collagen, the logarithm of fibroblast concentration, and the initial gel thickness were obtained and analyzed. Keratinocytes grown at the lowest seeding density did not contract the equivalents. However, histologic analysis has shown an incomplete coverage by these cells of the equivalents. The extensive contraction of the skin equivalent presenting adequate morphology is a major drawback toward its clinical utilization for burn wound coverage.

This is a preview of subscription content, access via your institution.

References

  1. Allen, T. E.; Schor, S. L. The contraction of collagen matrices by dermal fibroblasts. J. Ultrastruct. Res. 83:205–219; 1983.

    PubMed  Article  CAS  Google Scholar 

  2. Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76(3):1274–1278; 1979.

    PubMed  Article  CAS  Google Scholar 

  3. Bell, E.; Ehrlich, H. P.; Sher, S., et al. Development and use of a living skin equivalent. Plast. Reconstr. Surg. 67(3):386–392; 1981.

    PubMed  Article  CAS  Google Scholar 

  4. Bell, E.; Sher, S.; Hull, B. The living skin-equivalent as a structural and immunological model in skin grafting. Scam. Electr. Microsc. 4:1957–1962; 1984.

    Google Scholar 

  5. Box, G. E. P.; Behnken, D. W. Some new three level designs for the study of quantitative variables. Technometrics. 2(4):455–475; 1960.

    Article  Google Scholar 

  6. Box, G. E. P.; Wilson, K. B. On the experimental attainment of optimum conditions. J. R. Stast. Soc. B. 13:1–45; 1951.

    Google Scholar 

  7. Chen, T. C. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104:255–262; 1977.

    PubMed  Article  CAS  Google Scholar 

  8. Coulomb, B.; Saiag, P.; Bell, E., et al. A new method for studying epidermalization in vitro. Br. J. Dermatol. 114:91–101; 1986.

    PubMed  Article  CAS  Google Scholar 

  9. Coulomb, B.; Lebreton, C.; Dubertret, L. Influence of human dermal fibroblasts on epidermalization. J. Invest. Dermatol. 92(1):122–125; 1989.

    PubMed  Article  CAS  Google Scholar 

  10. Ehrlich, H. P. The role of connective tissue matrix in wound healing. In: Ehrlich, H. P., ed. Growth factors and other aspects of wound healing: biologial and clinical implications. New York: Alan R. Liss; 1988:243–258.

    Google Scholar 

  11. Emerman, J. T.; Enami, J.; Pitelka, D. R., et al. Hormonal effects on intracellular and secreted casein in cultures of mouse mammary epithelial cells on floating collagen membranes. Proc. Natl. Acad. Sci. USA 74(10):4466–4470; 1977.

    PubMed  Article  CAS  Google Scholar 

  12. Emerman, J. T.; Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328; 1977.

    PubMed  Article  CAS  Google Scholar 

  13. Green, H.; Kehinde, O.; Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 76(11):5665–5668; 1979.

    PubMed  Article  CAS  Google Scholar 

  14. Grinnell, F.; Lamke, C. R. Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell Sci. 66:51–63; 1984.

    PubMed  CAS  Google Scholar 

  15. Grinnell, F.; Takashima, A.; Lamke-Seymour, C. Morphological appearance of epidermal cells cultured on fibroblastreorganized collagen gels. Cell Tissue Res. 246:13–21; 1986.

    PubMed  Article  CAS  Google Scholar 

  16. Harris, A. K.; Stopak, D.; Wild, P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251; 1981.

    PubMed  Article  CAS  Google Scholar 

  17. Hull, B. E.; Sher, S. E.; Rosen, S., et al. Structural integration of skin equivalents grafted to Lewis and Sprague-Dawley rats. J. Invest. Dermatol. 81:429–436; 1983.

    PubMed  Article  CAS  Google Scholar 

  18. Hill, W. J.; Hunter, W. G. A review of response surface methodology: a literature survey. Technometrics 8(4):571–590; 1966.

    Article  Google Scholar 

  19. Lillie, J. H.; MacCallum, D. K.; Jepsen, A. Growth of stratified squamous epithelium on reconstituted extracellular matrices: long-term culture. J. Invest. Dermatol. 90(2):100–109; 1988.

    PubMed  Article  CAS  Google Scholar 

  20. Mackenzie, I. C.; Fusenig, N. E. Regeneration of organized epithelial structure. J. Invest. Dermatol. 81(1):189s-194s; 1983.

    PubMed  Article  CAS  Google Scholar 

  21. Michalopoulos, G.; Pitot, H. C. Primary culture of parenchymal liver cells on collagen membranes. Exp. Cell Res. 94:70–78; 1975.

    PubMed  Article  CAS  Google Scholar 

  22. Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344; 1975.

    PubMed  Article  CAS  Google Scholar 

  23. Rowling, P. J. E.; Raxworthy, M. J.; Wood, E. J., et al. The influence of keratinocyte seeding and keratinocyte growth medium on dermal equivalent contraction. J. Invest. Dermatol. 92(3):510a; 1989.

    Google Scholar 

  24. Saiag, P.; Coulomb, B.; Lebreton, C., et al. Psoriatic fibroblasts induce hyperproliferation of normal keratinocytes in a skin equivalent model in vitro. Science 230(4726):669–672; 1985.

    PubMed  Article  CAS  Google Scholar 

  25. Schor, S. L. Cell proliferation and migration on collagen substrata in vitro. J. Cell Sci. 41:159–175; 1980.

    PubMed  CAS  Google Scholar 

  26. Sher, S. E.; Hull, B. E.; Rosen, S., et al. Acceptance of allogeneic fibroblasts in skin equivalent transplants. Transplantation 36(5):552–557; 1983.

    PubMed  Article  CAS  Google Scholar 

  27. SAS Institute Inc. SASR user's guide: Statistics, version 5 edition. Cary, NC: SAS Institute Inc., 1985.

    Google Scholar 

  28. Schafer, I. A.; Shapiro, A.; Kovach, M., et al. The interaction of human papillary and reticular fibroblasts and human keratinocytes in the contraction of three-dimensional floating collagen lattices. Exp. Cell Res. 183:112–125; 1989.

    PubMed  Article  CAS  Google Scholar 

  29. Souren, J. M.; Ponec, M.; van Wijk, R. Contraction of collagen by human fibroblasts and keratinocytes. In, Vitro Cell. Dev. Biol. 25:1039–1045; 1989.

    CAS  Google Scholar 

  30. Yoshizato, K.; Taira, T.; Yamamoto, N., et al. Remodeling of collagen: an in vitro model of connective tissue. Biomed. Res. 6(5):287–296; 1985.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Le Duy.

Additional information

The financial supports for this project were received from Canadian NSERC postgraduate scholarship (P. Rompré), Québec FCAR postgraduate scholarship (C.A. López Valle), France-Québec research grant in Biotechnology (F.A. Auger), Canadian MRC grant (F.A. Auger), and NSERC grants (A. LeDuy and J. Thibault).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rompré, P., Auger, F.A., Germain, L. et al. Influence of initial collagen and cellular concentrations on the final surface area of dermal and skin equivalents: A box-behnken analysis. In Vitro Cell Dev Biol 26, 983–990 (1990). https://doi.org/10.1007/BF02624473

Download citation

Key words

  • dermal equivalent
  • skin equivalent
  • keratinocytes
  • dermal contraction
  • Box-Behnken
  • collagen gels