Advertisement

In Vitro Cellular & Developmental Biology

, Volume 26, Issue 11, pp 1030–1034 | Cite as

Rapid chemosensitivity assay with human normal and tumor cells in vitro

  • Ellen Borenfreund
  • Harvey Babich
  • Nieves Martin-Alguacil
Regular Papers

Summary

Neutral red assay, as an index of cytotoxicity, has been applied to predictive screening of chemotherapeutic agents. Human hepatoma and melanoma tumor cells and normal melanocytes, keratinocytes and fibroblasts were incubated for 2, 24, and 48 h with graded concentrations of cis-platinum (0.1 to 80 μM), doxorubicin (0.01 to 100 μM), and 5-fluorouracil (1 to 1000 μM). Cells were most sensitive after 48 h. Tumor cells, based on 50% toxicity values, were 2–4 times more sensitive than the normal cells, except for cis-platinum, where only melanoma cells, as compared to normal melanocytes, showed a marked difference in cytotoxic response. Methotrexate (1 to 10 μM) toxicity could be reversed in the presence of 100 μM of leucovorin. This sensitive, rapid, and economical assay is suitable for preclinical screening and drug development.

Key words

chemotherapeutics in vitro screening neutral red assay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babich, H.; Borenfreund, E. Structure-activity relationship (SAR) models establishedin vitro with the neutral red cytotoxicity assay. Toxicol. In Vitro 1:3–9; 1987.CrossRefPubMedGoogle Scholar
  2. 2.
    Babich, H.; Borenfreund, E. In vitro cytotoxicity of organic pollutants to bluegill sunfish (BF-2) cells. Environ. Res. 42:229–237; 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Babich, H.; Borenfreund, E. Structure-activity relationships for diorganotins, chlorinated benzenes and chlorinated anilines established with bluegill sunfish BF-2 cells. Fund. Appl. Toxicol. 10:295–301; 1988.CrossRefGoogle Scholar
  4. 4.
    Babich, H.; Martin-Alguacil, N.; Borenfreund, E. Mediating role of metabolic activation inin vitro cytotoxicity assays. Mol. Toxicol. 1:363–372; 1987/88.Google Scholar
  5. 5.
    Babich, H.; Martin-Alguacil, N.; Borenfreund, E. Comparison of the cytotoxicities of dermatotoxicants to human keratinocytes and fibroblastsin vitro. In: Goldberg, A. M., ed. Alternative methods in toxicology, vol. 7. New York: Mary Liebert Inc., Publ.; 1989:153–167.Google Scholar
  6. 6.
    Babich, H.; Sardana, M. K.; Borenfreund, E. Acute cytotoxicities of polynuclear aromatic hydrocarbons determinedin vitro with human liver tumor cell line HepG2. Cell Biol. Toxicol. 4:295–300; 1988.PubMedCrossRefGoogle Scholar
  7. 7.
    Bertino, J. R. “Rescue” techniques in cancer chemotherapy: use of leucovorin and other rescue agents after methotrexate treatment. Semin. Oncol. 4:203–216; 1977.PubMedGoogle Scholar
  8. 8.
    Bleyer, W. A. New vistas for leucovorin in cancer chemotherapy. Cancer 63:995–1007; 1989.PubMedCrossRefGoogle Scholar
  9. 9.
    Borenfreund, E.; Puerner, J. A. Toxicity determinedin vitro by morphological alterations and neutral red adsorption. Toxicol. Lett. 24:119–124; 1985.PubMedCrossRefGoogle Scholar
  10. 10.
    Borenfreund, E.; Puerner, J. A. Cytotoxicity of metals, metalmetal and metal-chelator combinations assayedin vitro. Toxicology 39:121–134; 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Borenfreund, E.; Babich, H.In vitro cytotoxicity of heavy metals, acetylamide and organotin salts to neural cells and fibroblasts. Cell Biol. Toxicol. 3:63–73; 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Borenfreund, E.; Puerner, J. A. Short term quantitativein vitro cytotoxicity assay involving an S-9 activating system. Cancer Lett. 34:243–248; 1987.PubMedCrossRefGoogle Scholar
  13. 13.
    Carter, S. K. Adriamycin. A review. JNCI 55:1265–1274; 1975.PubMedGoogle Scholar
  14. 14.
    Hamburger, A. W.; Salmon, S. E. Primary bioassay of human tumor stem cells. Science 197:461–463; 1977.PubMedCrossRefGoogle Scholar
  15. 15.
    Mossman, T. Rapid calorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immun. Methods 65:55–63; 1983.CrossRefGoogle Scholar
  16. 16.
    Pinto, A. L.; Lippard, S. J. Sequence dependent termination ofin vitro DNA synthesis by cis- and trans-diamminedichloroplatinum (II). Proc. Natl. Acad. Sci. USA 82:4616–4619; 1985.PubMedCrossRefGoogle Scholar
  17. 17.
    Ross, D. D.; Joneckis, C. C.; Ordonez, J. V., et al. Estimation of cell survival by flow cytometric quantification of fluorescein diacetate/propidium iodide viable cell number. Cancer Res. 49:3776–3782; 1989.PubMedGoogle Scholar
  18. 18.
    Salmon, S. E.; Hamburger, A. W.; Soehnlen, B., et al. Quantitation of differential sensitivity of human tumor stem cells to anticancer drugs. N. Engl. J. Med. 298:1321–1327; 1978.PubMedCrossRefGoogle Scholar
  19. 19.
    Shilsky, R. L.; Yarbro, J. W. Pharmacology of antineoplastic drugs. In: Perry, M. C.; Yarbro, J. W., eds. Toxicity of chemotherapy, New York Grune & Stratton Inc.; 1984:21–59.Google Scholar
  20. 20.
    Sorenson, C. M.; Eastman, A. Mechanism of cisdiamminedichloroplatinum (II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks. Cancer Res. 48:4484–4488; 1988.PubMedGoogle Scholar

Copyright information

© Tissue Culture Association 1990

Authors and Affiliations

  • Ellen Borenfreund
    • 1
  • Harvey Babich
    • 1
    • 2
  • Nieves Martin-Alguacil
    • 1
  1. 1.Laboratory Animal Research CenterThe Rockefeller UniversityNew York
  2. 2.Department of Biological SciencesYeshiva University, Stern CollegeNew York

Personalised recommendations