Skip to main content
Log in

Effects of proximate cholesterol precursors and steroid hormones on mouse myeloma growth in serum-free medium

  • Rapid Communications in Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Editor's Statement These results help identify the defect in myeloma cells leading to cholesterol auxotrophy. The use of these cells in hybridoma derivation adds practical utility to a detailed appreciation of cholesterol metabolism in these cultures.

Summary

The proximate cholesterol precursors lathosterol, 7-dehydrocholesterol and desmosterol supported the growth of NS-1 and X63 mouse myeloma cells. These cells and X63.653 cells are cholesterol auxotrophs, yet each was able to convert [3H]lathosterol to [3H]cholesterol. These results are consistent with the conclusion that cholesterol auxotrophy in these myeloma cells is due to a deficiency in 3-ketosteroid reductase activity. The steroid hormones testosterone, progesserone and hydrocortisone could not replace cholesterol as a medium supplement. These results provide a greater understanding of the cholesterol auxotrophy characteristic of cell lines clonally-derived from the MOPC 21 myeloma tumor, and they provide a rational basis for the use of sterols in defined culture medium for mouse myeloma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kawamoto, T.; Sato, J. D.; Le, A., et al. Development of a serum-free medium for growth of NS-1 mouse myeloma cells and its application to the isolation NS-1 hybridomas. Anal. Biochem. 130:445–453; 1983.

    Article  PubMed  CAS  Google Scholar 

  2. Sato, J. D.; Kawamoto, T.; McClure, D. B., et al. Cholesterol requirement of NS-1 mouse myeloma cells for growth in serum-free medium. Mol. Biol. Med. 2:121–134; 1984.

    PubMed  CAS  Google Scholar 

  3. Sato, J. D.; Kawamoto, T.; Okamoto, T. Cholesterol requirement of P3-X63-Ag8 and X63-Ag8.653 mouse myeloma cells for growth in vitro. J. Exp. Med. 165:1761–1766; 1987.

    Article  PubMed  CAS  Google Scholar 

  4. Horibata, K.; Harris, A. W. Mouse myeloma and lymphomas in culture. Exp. Cell Res. 60:61–77; 1970.

    Article  PubMed  CAS  Google Scholar 

  5. Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (Lond.) 256:495–497; 1975.

    Article  CAS  Google Scholar 

  6. Kohler, G.; Howe, S. C.; Milstein, C. Fusion between immunoglobulin-secreting and nonsecreting myeloma cell lines. Eur J. Immunol. 6:292–295; 1976.

    Article  PubMed  CAS  Google Scholar 

  7. Kearney, J. F.; Radbruch, A.; Liesgang, B., et al. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J. Immunol. 123:1548–1550; 1979.

    PubMed  CAS  Google Scholar 

  8. Schulman, M. D.; Wilde, C. D.; Kohler, G. A better cell line for making hybridomas secreting specific antibodies. Nature (Lond) 276:269–270; 1978.

    Article  Google Scholar 

  9. Chen, J.-K.; Okamoto, T.; Sato, J. D., et al. Biochemcal characterization of the cholesterol-dependent growth of NS-1 mouse myeloma cell line. Exp. Cell Res. 163:117–126; 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Schroepfer, G. J. Sterol biosynthesis. Ann. Rev. Biochem. 51:555–585; 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Sato, J. D.; Welsh, C. J.; Cao, H.-t., et al. Cholesterol auxotrophy of NS-1 mouse myeloma cells: identification of an accumulated 3-ketosteroid precursor of cholesterol. (Abstract) FASEB J. 2:A579; 1988.

    Google Scholar 

  12. Billheimer, J. T.; Alcorn, M.; Gaylor, J. L. Solubilization and partial purification of a microsomal 3-ketosteroid reductase of cholesterol biosynthesis. Arch. Biochem. Biophys. 211:430–438; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Billheimer, J. T.; Chamoun, D.; Esfahani, M. Defective 3-ketosteroid reductase activity of a human monocyte-like line. J. Lipid Res. 28:704–709; 1987.

    PubMed  CAS  Google Scholar 

  14. Ishibashi, T.; Bloch, K. Intermembrane transfer of 5α-cholest-7-en-3β-ol. Facilitation by supernatant protein (SCP). J. Biol. Chem. 256:12962–12967; 1981.

    PubMed  CAS  Google Scholar 

  15. Bligh, E. G. Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917; 1959.

    PubMed  CAS  Google Scholar 

  16. Okamoto, T.; Moroyama, T.; Morita, T., et al. Differentiation of cultured epidermal keratinocytes related to sterol metabolism and its retardation by chemical carcinogens. Biochim. Biophys. Acta 805:143–151; 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Lisboa, B. P. Thin-layer chromatography of steroids, sterols and related compounds. Meth. Enzymol. 15:3–158; 1969.

    Article  CAS  Google Scholar 

  18. Gaylor, J. L. Formation of sterols in animals. In: Porter, J. W.; Spurgeon, S. L., eds. Biosynthesis of isoprenoid compounds. New York: John Wiley and Sons; 1981:481–543.

    Google Scholar 

  19. Darfler, F. J.; Insel, P. A. Serum-free culture of resting, PHA-stimulated, and transformed lymphoid cells, including hybridomas. Exp. Cell Res. 138:287–295; 1982.

    Article  PubMed  CAS  Google Scholar 

  20. Cleveland, W. L.; Wood, I.; Erlanger, B. F. Routine large-scale production of monoclonal antibodies in a protein-free culture medium. J. Immunol. Meth. 56:221–234; 1983.

    Article  CAS  Google Scholar 

  21. Kovar, J.; Franek, F. Serum-free medium for hybridoma and parental myeloma cell cultivation: a novel composition of growth-supporting substances. Immunol. Lett. 7:339–345; 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Rothblat, G. H.; Burns, C. H.; Conner, R. L., et al. Desmosterol as the major sterol in L-cell mouse fibroblasts grown in sterol-free culture medium. Science (Washington, DC) 169:880–882; 1970.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Institute of Health grants CA40294 and CA37589 to G. H. Sato and by a grant from RJR nabisco Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, J.D., Gao, HT., Kayada, Y. et al. Effects of proximate cholesterol precursors and steroid hormones on mouse myeloma growth in serum-free medium. In Vitro Cell Dev Biol 24, 1223–1228 (1988). https://doi.org/10.1007/BF02624194

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624194

Key words

Navigation