Skip to main content
Log in

A new human pancreatic carcinoma cell line developed for adoptive immunotherapy studies with lymphokine-activated killer cells in nude mice

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

A human tumor cell line designated SU.86 has been established from a moderate-to-poorly differentiated pancreatic carcinoma of ductal origin specifically for adoptive immunotherapy studies. This line was characterized as to its ability to be lysed in vitro by autologous and allogeneic lymphokine-activated killer (LAK) and natural killer cells and to grow in nude mice. SU.86 has been growing continuously in cell culture for more than 100 passages since 22 September 1986. Transplantation orthotopically and heterotopically into athymic Swiss nude mice showed that tumor take was 100% in the orthotopic position when young (4 to 6 wk old) mice were used and 0% when adult (8 wk old) mice were used (P=0.004). In the heterotopic position (subcutaneous), tumor take was 100% in neonate (2 to 3 wk old) and young mice and 50% in adults. The rate of tumor growth was inversely correlated with age (P<0.001). The histologic pattern is similar to that observed in most human pancreatic carcinomas with pseudoglandular structures and frequent mitotic figures. SU.86 has a doubling time of 77 h in vitro and produces carcinoembryonic antigen, 594 ng/106 cells in 3 d. Chromosomal analysis shows heterogeneity with two notable cell subpopulations. The cell line is moderately sensitive to lysis by LAK cells in a standard, 4-h chromium-51 release assay (35.4±4.0%). When grown together with LAK cells in vitro, it is lysed completely in culture in 8 to 15 d, depending on the serum concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dissin, J.; Mills, L. R.; Mains, D. L., et al. Experimental induction of pancreatic adenocarcinoma in rats. JNCI 55:857–864; 1975.

    PubMed  CAS  Google Scholar 

  2. Townsend, C. M.; Franklin, R. B.; Gelder, F. B., et al. Development of a transplantable model of pancreatic duct adenocarcinoma. Surgery 92:72–78; 1982.

    PubMed  Google Scholar 

  3. Reddy, J. K.; Rao, M. S. Pancreatic adenocarcinoma in inbred guinea pigs induced byN-methyl-N-nitrosourea. Cancer Res 35:2269–2277; 1975.

    PubMed  CAS  Google Scholar 

  4. Hewitt, H. B. Animal tumor models and their relevance to human tumor immunology. J. Biol. Response Modif. 1:107–119; 1982.

    Google Scholar 

  5. Rapp, H. J. Appropriateness of animal models for the immunology of human cancer. Cancer Res. 39:4285–4287; 1979.

    PubMed  CAS  Google Scholar 

  6. Herberman, R. B. Counterpoint: Animal tumor models and their relevance to human tumor immunology. J. Biol. Response Modif. 2:39–46; 1983.

    CAS  Google Scholar 

  7. Baldwin, R. W. Relevant animal models for tumor immunotherapy. Cancer Immunol. Immunother. 1:197–198; 1976.

    Article  Google Scholar 

  8. Dexter, D. L.; Matook, G. M.; Meitner, P. A., et al. Establishment and characterization of two human pancreatic cancer cell lines tumorigenic in athymic mice. Cancer Res. 42:2705–2714; 1982.

    PubMed  CAS  Google Scholar 

  9. Lieber, M.; Mazzatta, J.; Nelson-Rees, W., et al. Establishment of a continuous tumor-cell line (PANC-1) from a human carcinoma of the exocrine pancreas. Int. J. Cancer 15:741–747; 1975.

    Article  PubMed  CAS  Google Scholar 

  10. Okabe, T.; Yamaguchi, N.; Ohsawa, N. Establishment and characterization of a carcinoembryonic antigen (CEA)-producing cell line from a human carcinoma of the exocrine pancreas. Cancer 51:662–668; 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Yunis, A. A.; Arimura, G. K.; Russin, D. J. Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int. J. Cancer 19:128–135; 1977.

    Article  PubMed  CAS  Google Scholar 

  12. Akagi, T.; Kimoto, T. Establishment and characteristics of a human pancreatic cancer cell line (HCG-25). Acta Pathol. Jpn. 27:51–58; 1977.

    PubMed  CAS  Google Scholar 

  13. Kyriazis, A. P.; McCombs, W. B.; Sandberg, A. A., et al. Establishment and characterization of human pancreatic carcinoma cell line SW-1990 in tissue culture and the nude mouse. Cancer Res. 43:4393–4401; 1983.

    PubMed  CAS  Google Scholar 

  14. Tan, M. H.; Chu, T. M. Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (ASPC-1) implanted orthotopically into nude mice. Tumor Biol. 6:89–98; 1985.

    CAS  Google Scholar 

  15. Dobrynin, Y. V. Establishment and characteristics of cell strains from some epithelial tumors of human origin. JNCI 31:1173–1195; 1963.

    PubMed  CAS  Google Scholar 

  16. Kaku, M.; Nishiyama, T.; Yagawa, K., et al. Establishment of carcinoembryonic antigen-producing cell line from human pancreatic carcinoma. GANN 71:596–601; 1980.

    PubMed  CAS  Google Scholar 

  17. Rosenberg, S. A.; Grimm, E. A.; McGrogan, M., et al. Biological activity of recombinant interleukin-2 inEscherichia coli. Science 223:421–1415; 1984.

    Article  Google Scholar 

  18. Wang, S. A.; Lu, S. D.; Mark, D. Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science 224:1431–1433; 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Larick, J. W.; Dyer, B. J. Mycoplasma testing. In: Engleman, E. G.; Foung, S. K. H.; Larrick, J., et al. eds. Human hybridomas and monoclonal antibodies. New York: Plenum Press; 1985:430–432.

    Google Scholar 

  20. Felder, R. A.; MacMillan, R. H.; Burns, D. E. Two monoclonal based assays for carcinoembryonic antigen compared. Clin. Chem. 33:700–704; 1987.

    PubMed  CAS  Google Scholar 

  21. Strausser, J. L.; Rosenberg, S. A.In vitro growth of cytotoxic human lymphocytes. I. Growth of cells sensitizedin vitro to alloantigens. J. Immunol. 121:86–96; 1978.

    Google Scholar 

  22. Lozzio, C. B.; Lozzio, B. B. Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. Blood 45:321; 1975.

    PubMed  CAS  Google Scholar 

  23. Yunis, J. J. High resolution human chromosomes. Science 191:1268–1270; 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Gibas, L. M.; Jackson, L. G. A new hypotonic solution for cytogenetic analysis of leukemic bone marrow cells. Karyogram 11:91–92; 1985.

    Google Scholar 

  25. Seabright, M. A rapid banding technique for human chromosomes. Lancet 2:971–972; 1971.

    Article  PubMed  CAS  Google Scholar 

  26. Freiman, J. A.; Chalmers, T. C.; Smith, H., et al. The importance of beta, the type II error and sample size in the design and interpretation of the randomized control trial. N. Engl. J. Med. 299:690–695; 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Harnden, D. G.; Klinger, H. P., eds. An international system for human cytogenetic nomenclature (1985): report of the standing committee on human cytogenetic nomenclature. Birth Defects Orig. Artic. Ser. 21 (1); 1985.

  28. Kobari, M.; Matsuno, S.; Sato, T., et al. Establishment of a human pancreatic cancer cell line and detection of pancreatic cancer associated antigen. Tohoku J. Exp. Med. 143:33–46; 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Fogh, J.; Fogh, J. M.; Orfeo, T. One hundred and twenty-seven cultured human tumor lines producing tumors in nude mice. JNCI 59:221–226; 1977.

    PubMed  CAS  Google Scholar 

  30. Grant, A. G.; Duke, D.; Hermon-Taylor, J. Establishment and characterization of primary human pancreatic carcinoma in continuous cell culture and in nude mice. Br. J. Cancer 39:143–151; 1979.

    PubMed  CAS  Google Scholar 

  31. Rosenberg, S. A. Adoptive immunotherapy of cancer using lymphokine activated killer cells and recombinant interleukin-2. In: De Vita, V. T.; Hellman, S.; Rosenberg, S. A., eds. Important advances in oncology, Philadelphia: J. B. Lippincott Company; 1986:55–91.

    Google Scholar 

  32. Hanna, N. Expression of metastatic potential of tumor cells in young nude mice is correlated with low levels of natural killer cell-mediated cytotoxicity. Int. J. Cancer 26:675–680; 1980.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drucker, B.J., Marincola, F.M., Siao, D.Y. et al. A new human pancreatic carcinoma cell line developed for adoptive immunotherapy studies with lymphokine-activated killer cells in nude mice. In Vitro Cell Dev Biol 24, 1179–1187 (1988). https://doi.org/10.1007/BF02624187

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624187

Key words

Navigation