Skip to main content
Log in

Developmental potential of day 13 porcine embryonic disk under in vitro culture conditions

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Embryonic disks were microsurgically isolated from adjacent trophoblast tissue, and cultured for varying periods in vitro. During the first 24 h of culture, vesicles (1 to 4/disk) composed of mesoderm and endoderm formed from the ventral surface. In the subsequent culture period, the vesicles continued to increase in size and by 96 h in vitro, most originally multivesiculated explants possessed a single vesicle formed by delamination and coalescence of smaller vesicles. Scanning electron microscopy revealed the formation of grooves and ridges in abnormal attempts at differentiation by the embryonic ectoderm. Endoderm comprising the outer tissue layer of the vesicle underwent a gradual alteration in surface morphology during in vitro culture. Initially flat, with a paucity of microvilli, these cells became dome-shaped with an abundance of microvilli. In addition, they became highly secretory as revealed by the presence of numerous secretory droplets at their surface. After culture for periods of up to 10 d, several explants displayed areas containing pulsating tissue, with contractions occurring at a rate of 20 to 30/minute, indicative of mesoderm differentiation. Culture of porcine isolated embryonic disk in vitro should enhance investigations into the regulation of germ, layer formation and differentiation and assist in determining the tissue source of conceptus secretory products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, R. L.; Wright, R. W. Observations on thein vitro formation, development and differentiation of trilaminar vesicles formed from enzymatically dispersed porcine blastocysts. Theriogenology 23: 333–345; 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, L. L. Growth, protein content and distribution of early pig embryos. Anat. Rec. 190: 143–154; 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Bazer, F. W.; First, N. L. Pregnancy and parturition. J. Anim. Sci. 57 (Suppl. 1): 425–460; 1983.

    PubMed  CAS  Google Scholar 

  4. Beddington, R. The origin of the foetal tissues during gastrulation in the rodent. In: Johnson, M. H., ed. Development in mammalsvol. 5. Amsterdam: Elsevier Science Publishers; 1983: 1–32.

    Google Scholar 

  5. Betteridge, K. J.; Eaglesome, M. D.; Randall, G. C. B., et al. Collection, description and transfer of embryos from cattle 10–16 days after oestrus. J. Reprod. Fert. 59: 205–216; 1980.

    Article  CAS  Google Scholar 

  6. Davis, D. L.; Pakrasi, P. D.; Dey, S. K. Prostaglandins in swine blastocysts. Biol. Reprod. 28: 1114–1118; 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Dey, S. K.; Davis, D. L.; Hersey, R. M., et al. Physiological aspects of blastocysts uterine interaction. J. Biocci. 6 (Suppl. 2): 23–31; 1984.

    CAS  Google Scholar 

  8. Dhindsa, D. S.; Dziuk, P. J. Effect on pregnancy in the pig after killing embryos in one uterine horn in early gestation. J. Anim. Sci. 27: 122–126; 1968.

    PubMed  CAS  Google Scholar 

  9. Fisher, H. E.; Bazer, F. W.; Fields, M. J. Steroid metabolism by endometrial and conceptus tissue during early pregnancy and pseudopregnancy in swine. J. Reprod. Fert. 75: 69–78; 1985.

    Article  Google Scholar 

  10. Flint, A. P. F.; Saunders, P. T. K.; Ziecik, A. J. Blastocyst-endometrium interactions and their significance in embryonic mortality. In: Cole, D. J. A., Foxcroft, G. R., eds. Control of pig reproduction. London: Butterworth Scientific; 1982.

    Google Scholar 

  11. Geisert, R. D.; Brookbank, J. W.; Roberts, R. M., et al. Establishment of pregnancy in the pig: II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biol. Reprod. 27: 941–955; 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Geisert, R. D.; Renegar, R. H.; Thatcher, W. W., et al. Establishment of pregnancy in the pig: I. Interrelationships between preimplantation development of the pig blastocyst and uterine endometrial secretions. Biol. Reprod. 27: 925–939; 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Godkin, J. D.; Bazer, F. W.; Lewis, G. S., et al. Synthesis and release of polypeptides by pig conceptuses during the period of blastocyst elongation and attachment. Biol. Reprod. 27: 977–987; 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Godkin, J. D.; Bazer, F. W.; Roberts, R. M. Protein production by cultures established from Day 14–16 sheep and pig conceptuses. J. Reprod. Fert. 74: 377–382; 1985.

    Article  CAS  Google Scholar 

  15. Grobstein, C. Behavior of the mouse embryonic shield in plasma clot culture. J. Exp. Zool. 115: 297–314; 1950.

    Article  Google Scholar 

  16. Grobstein, C. Intra-ocular growth and differentiation of clusters of mouse embryonic shields cultured with and without primitive endoderm and in the presence of possible inductors. J. Exp. Zool. 119: 355–379; 1952.

    Article  Google Scholar 

  17. Heuser, C. H.; Streeter, G. L. Early stages in the development of pig embryos from the period of initial cleavage to the time of the appearance of limb-buds. Contrib. Embryol. 20: 1–29; 1929.

    Google Scholar 

  18. Johnson, B. H.; Ulberg, L. C. Development of porcine embryos from day 7 to day 12 as seen through the scanning electron microscope. J. Anim. Sci. 59 (Suppl. 1): 50–51; 1984.

    Google Scholar 

  19. King, G. J.; Ackerley, C. A. Demonstration of oestrogens in developing pig trophectoderm and yolk sac endoderm between days 10 and 16. J. Reprod. Fert. 73: 361–367; 1985.

    Article  CAS  Google Scholar 

  20. Lewis, G. S.; Waterman, R. A. Metabolism of arachidoic acid in vitro by porcine blastocysts and endometrium. Prostaglandins 25: 871–880; 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Minuth, W. W.; Tiedemann, K. The pig yolk sac. II. Analysis of synthesized proteins. Histochemistry 68: 147–158; 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Mondschein, J. S.; Hersey, R. M.; Dey, S. K., et al. Catechol estrogen formation by pig blastocysts during the preimplantation period: biochemical characterization of estrogen-2/4-hydroxylase and correlation with aromatase activity. Endocrinology 117: 2339–2346; 1985.

    Article  PubMed  CAS  Google Scholar 

  23. New, D. A. T. Whole embryo culture and the study of mammalian embryos during organogenesis. Biol. Rev. 53: 81–122; 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Patten, B. M. Embryology of the pig. 3rd ed. Philadelphia: The Blakiston Company; 1948.

    Google Scholar 

  25. Perry, J. S. The mammalian fetal membranes. J. Reprod. Fert. 62: 321–335; 1981.

    Article  CAS  Google Scholar 

  26. Perry, J. S.; Rowlands, I. W. Early pregnancy in the pig. J. Reprod. Fert. 4: 175–188; 1962.

    Article  Google Scholar 

  27. Perry, J. S.; Heap, R. B.; Amoroso, E. C. Steroid hormone production by pig blastocysts. Nature 245: 45–47; 1973.

    Article  PubMed  CAS  Google Scholar 

  28. Polge, C. Embryo transplantation and preservation. In: Cole, D. J. A., Foxcroft, G. R., eds. In: Control of pig reproduction. London: Butterworth Scientific; 1982: 277–291.

    Google Scholar 

  29. Powell-Jones, C. H. J.; Lester, J. B.; Polge, C., et al. Pattern of medium proteins radiolabeled after culture of day 13 to 16 conceptus tissue with [3H]leucine and absence of chorionic gonadotropin-like activity. J. Reprod. Fert. 71: 161–172; 1984.

    Article  CAS  Google Scholar 

  30. Skreb, N.; Hoffman, L. Effect of dibutyrl cAMP and theophylline on cultured rat embryonic shields. Experientia 33: 1651–1652; 1977.

    Article  PubMed  CAS  Google Scholar 

  31. Skreb, N.; Svajger, A. Histogenetic capacity of rat and mouse embryonic shields cultivated in vitro. Wilhelm Roux' Arch. Dev. Biol 173: 228–234; 1973.

    Article  Google Scholar 

  32. Skreb, N.; Svajger, A.; Levak-Svajer, B. Developmental potentialities of the germ layers in mammals. In: Embryogenesis in mammals. Ciba Foundation symposium. Amsterdam: Elsevier/Excerpta Medica/North Holland; 1976.

    Google Scholar 

  33. Skreb, N.; Crnek, V.; Durst-Zivkovic, B. Effect of various sera on cultured rodent embryonic shields. Cell differ. 12: 27–32, 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Skreb, N.; Hoffman, L.; Skreb, Y., et al. Cyclic nucleotides affect growth and differentiation of cultured rat embryonic shields. Dev. Biol. 101: 367–372; 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Streeter, G. L. Development of the mesoblast and notochord in pig embryos. Contrib. Embryol. 19: 73–92; 1927.

    Google Scholar 

  36. Stroband, H. W. J.; Taverne, N.; Bogaard, M. V. D. The pig blastocyst: its ultrastructural and the uptake of protein macromolecules. Cell Tissue Res. 235: 347–356; 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Svajger, A.; Levak-Svajger, B.; Skreb, N. Rat embryonic ectoderm as renal isograft. J. Embryol. Exp. Morphol. 94: 1–27; 1986.

    PubMed  CAS  Google Scholar 

  38. Tiedemann, K.; Minuth, W. W. The pig yolk sac. I. Fine structure of the posthaematopoietic organ. Histochemistry 68: 133–146; 1980.

    Article  PubMed  CAS  Google Scholar 

  39. Trujano, M.; Wrathall, A. E. Observations on the development in vitro of early (13-day) and later (15-day) porcine embryos. Br. Vet. J. 141: 378–387; 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by National Institutes of Health, Bethesda, MD, grant RR7071. Paper no. 11342 of Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silcox, R.W., Johnson, B.H. Developmental potential of day 13 porcine embryonic disk under in vitro culture conditions. In Vitro Cell Dev Biol 24, 1165–1172 (1988). https://doi.org/10.1007/BF02624185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624185

Key words

Navigation