In Vitro Cellular & Developmental Biology

, Volume 26, Issue 5, pp 515–524 | Cite as

Toxicity assessment of paraverine hydrochloride and papaverine-derived metabolites in primary cultures of rat hepatocytes

  • Julio C. Davila
  • Chandrasekara G. Reddy
  • Patrick J. Davis
  • Daniel Acosta
Regular Papers


The present study was undertaken to assess and compare the toxic effects of papaverine hydrochloride and its metabolites. Primary cell cultures of rat hepatocytes were treated with papavarine (papaver), 3′-O-desmethyl (3′-OH), 4′-O-desmethyl (4′-OH), and 6-O-desmethyl (6-OH) papaverine at 1×10−5, 1×10−4, and 1×10−3 M for 4,8, 12, and 24-h periods. Cell injury was determined by: a) cell viability using the trypan blue exclusion test; b) cytosolic enzyme leakage of lactate dehydrogenase and aspartate aminotransferase; c) morphologic alterations; and d) lactate: pyruvate (L:P) ratios. Cell cultures showed concentration-and time-dependent responses. For example, a decrease in cell viability and an increase in enzyme leakage were observed after cell treatment with 1×10−4 and 1×10−3 M papaver for 8 h; 1×10−3 M 6-OH papaverine for 8 h and 1×10−4 M for 24 h; and 1×10−3 M 4′-OH papaverine for 24 h (P<0.05). Furthermore, changes in morphology correlated to cell viability and enzyme release in those cultures treated with papaver, 4′-OH and 6-OH papaverine. Some of these changes included size deformation, cell detachment from the dishes, and cell necrosis. On the other hand, an increase in L:P ratios (P<0.05) was detected with papaver as early as 8 h with 1×10−4 and 1×10−3 M and 12 h with 1×10−5 M; 6-OH showed an increase, in L:P ratios at 8 h with 1×10−3 M and 12 h with 1×10−4 M; these changes were evident with 4′-OH at 12 h with 1×10−3 M. In contrast, cells treated with 3′-OH papaverine did not show significant damage with any time period and concentration used in this study. The results of this study indicate that papaverine-derived metabolites are less cytotoxic than its parent compound, papaver. The toxicity was ranked as follows: papaver>6-OH>4′-OH>−3′-OH.

Key words

hepatotoxicity papaverine papaverine-derived metabolites primary liver cell cultures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acosta, D.; Anuforo, D.; Smith R. V. Preparation of primary monolayer cultures of postnatal rat liver cells. J. Tissue Cult. Methods 6:35–37; 1980.CrossRefGoogle Scholar
  2. 2.
    Acosta, D.; Anuforo, D.C.; Smith, R. V. Cytotoxicity of acetaminophen and papaverine in primary cultures of rat hepatocytes. Toxicol. Appl. Pharmacol. 53:306–314; 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Acosta, D.; Mitchell, D. B.; Bruckner, J. B. Hepatotoxicity: anin vitro approach to the study of metabolism and toxicity of chemicals and drugs using cultured rat hepatocytes. In: Homburger, E., ed. Safety evaluation and regulation of chemicals 2. Switzerland: Karger; Basel; 1985:305–317.Google Scholar
  4. 4.
    Acosta, D.; Sorensen, E. M.; Mitchell, D. B., et al. Anin vitro approach to the study of target organ toxicity of drugs and chemicals. In Vitro Cell. Dev. Biol. 21:495–504; 1985.PubMedCrossRefGoogle Scholar
  5. 5.
    Acosta, D.; Mitchell, D.B.; Sorensen, E. M. B., et al. The metabolism and toxicity of xenobiotics in a primary culture system of postnatal rat hepatocytes. In: Rauckman, E. J., Padilla, G. M., eds. The isolated hepatocyte. New York: Academic Press; 1987:189–214.Google Scholar
  6. 6.
    Acosta, D.; Hsieh, C. G.; Davila, J. C., et al. Comparison of papaverine metabolism in culture systems of rat hepatocytes and fungal cells. Toxicologist 9:283; 1989.Google Scholar
  7. 7.
    Albrecht, T.; Lee, C. H.; Speelman, D. J., et al. Inhibition of cytomegalovirus replication by smooth-muscle relaxant agents. Proc. Soc. Exp. Biol. Med. 186:41–46; 1987.PubMedGoogle Scholar
  8. 8.
    American Medical Association. Agents used in peripheral and cerebral vascular disorders. In: AMA drug evaluations, 3rd ed. Littleton, MA: PSG Publishing Co. Inc.; 1977.Google Scholar
  9. 9.
    Axelrod, J.; Shofer, R.; Inscoe, J. K., et al. The fate of papaverine in man and other animals. J. Pharmacol. Exp. Ther. 124:9–15; 1958.PubMedGoogle Scholar
  10. 10.
    Belpaire, F. M.; Bogaert, M. G.; Rossel, M. T. Metabolism of papaverine I. Identification of metabolites in rat liver. Xenobiotica 5:413–420; 1975.PubMedGoogle Scholar
  11. 11.
    Belpaire, F. M.; Bogaert, M. G. Metabolism of papaverione II. Species differences. Xenobiotica 5:421–429; 1975.PubMedGoogle Scholar
  12. 12.
    Belpaire, F. M.; Bogaert, M. G. Metabolism of papaverine III. Effect of phenobarbital, 3-methylcholanthrene and SKF 525-A pre-treatmentin vivo andin vitro. Xenobiotica 5:431–438; 1975.PubMedGoogle Scholar
  13. 13.
    Belpaire, F. M.; Rossel, M. T.; Bogaert, M. G. Metabolism of papaverine IV. Urinary elimination of papaverine metabolites in man. Xenobiotica 8:297–300; 1978.PubMedGoogle Scholar
  14. 14.
    Brossi A.; Teitel, S. Selective demethylation of papaverine. J. Org. Chem. 35:1684–1687; 1970.PubMedCrossRefGoogle Scholar
  15. 15.
    Browning, E. T.; Groppi, V. E.; Kon, C. Papaverine a potent inhibitor of respiration in 6-C astrocytoma cells. Mol. Pharmacol. 10:175–181; 1973.Google Scholar
  16. 16.
    Czok, R.; Lamprecht, W. Pyruvate. In: Bergmeyer, H., ed. Methods of enzymatic analysis. New York: Academic Press; 1974:1446–1451.Google Scholar
  17. 17.
    Davila, J.; Lenherr, A.; Acosta, D. Protective effect of flavonoids on drug-induced hepatotoxicity. Toxicology 57:267–286; 1989.PubMedCrossRefGoogle Scholar
  18. 18.
    Driemen, P. M. Papaverine hepatotoxicity or not?. J. Am. Geriatr. Soc. 21:202–205; 1973.PubMedGoogle Scholar
  19. 19.
    Grisham, J. W.; Smith, G. J. Predictive and mechanistic evaluation of toxic responses in mammalian cell culture systems. Pharmacol. Rev. 36:151S-171S; 1984.PubMedGoogle Scholar
  20. 20.
    Gutmann I.; Wahlefeld, A.l-(+)-Lactate determination with lactate dehydrogenase and NAD. In: Bergmeyer, H., ed. Methods of enzymatic analysis. New York: Academic Press; 1974:1465–1468.Google Scholar
  21. 21.
    Guttman, D. E.; Kostenbauder, H. B.; Wilkinson, G. R., et al. GLC determination of papaverine in biological fludis. J. Pharm. Soc. 63: 1625–1626; 1974.CrossRefGoogle Scholar
  22. 22.
    Kiaer, H. W.; Olsen, S.; Ronnov-Jenssen, V Hepatotoxicity of papaverine. Arch. Pathol. 98:292–296: 1974.PubMedGoogle Scholar
  23. 23.
    Kowal, J.; Harano, Y. Adrenal cells in tissue culture. The effect of papaverine and amytal onesteroidogenesis, respiration and replication. Arch. Biochem. Biophys. 163:466–475; 1974.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee, B. Y.; Sakamoto, H.; Trainor, F. Comparison of soft gelatine capsule vs. sustained release formulation of papaverine HCl: vasodilation of plasma levels. Int. J. Clin. Pharm. 16:32–39; 1978.Google Scholar
  25. 25.
    Lehninger, A. L. Molecular basis of cell and function. In: Lehninger, A. L., ed. Biochemistry. New York: Worth Publishers; 1977.Google Scholar
  26. 26.
    Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement from phenol reagent. J. Biol. Chem. 193:265–275; 1951.PubMedGoogle Scholar
  27. 27.
    Mitchell, D. B.; Santone, K. S.; Acosta, D. Evaluation of cytotoxicity in cultured cells by enzyme leakage. J. Tissue Cult. Methods 6:113–116; 1980.CrossRefGoogle Scholar
  28. 28.
    Mohomed, Y.; Moorthy, S. S.; Brown, J. W., et al. Injection into coronary artery bypass grafts. Anesthesiology 61:350; 1984.CrossRefGoogle Scholar
  29. 29.
    Needleman, P.; Corr, P. B.; Johnson, E. M. Drugs used for the treatment of angina: organic nitrates, calcium channel blockers, and β adrenergic antagonists. In: Goodman G. A.; Goodman, L. S.; Rall, T. W., et al. Goodman and Gilman's the pharmacological basis of therapeutics, 7th ed. New York: MacMillan Publishing; 1985:806–826.Google Scholar
  30. 30.
    Poncin, E.; Silvain, C.; Touchard, G., et al. Papaverine-induced chronic liver disease. Gastroenterology 90:1051–1053; 1986.PubMedGoogle Scholar
  31. 31.
    Ritschel, W.A.; Hammer, G. V. Pharmacokinetics of papaverine in man. Int. J. Clin. Pharmacol. 15:227–229; 1977.Google Scholar
  32. 32.
    Rodaman, M. J. R.; Karch, A. M.; Boyd, E. H., et al. Vasodilator drugs for peripheral and cerebral vascular disorders. In: Rodaman, M. J. R.; Karch, A. M.; Boyd, E. H., eds. Pharmacology and drug therapy in nursing, 3rd ed. Philadelphia: J. B. Lippincot Co.; 1985:691–701.Google Scholar
  33. 33.
    Ronnov-Jenssen, V.; Tjernlund, A. Hepatotoxicity due to treatment with paraverine: report of four cases. N. Engl. J. Med. 281:1333–1335; 1969.CrossRefGoogle Scholar
  34. 34.
    Rosazza, J. P.; Kammer, M.; Youel, L., et al. Microbial models of mammalian metabolism O-demethylations of papative. Xenobiotica 7:133–143; 1977.PubMedGoogle Scholar
  35. 35.
    Santi R.; Contessa, A. R.; Ferrari, M. Spasmolytic effect of the papaverine and inhibition of the oxidative phosphorilation. Biochem. Biophys. Res. Commun. 11:156–159; 1963.PubMedCrossRefGoogle Scholar
  36. 36.
    Santone, K. S.; Acosta, D.; Bruckner, J. V. Cadmium toxicity in primary cultures of rat hepatocytes. J. Toxicol. Environ. Health 10:169–177; 1982.PubMedCrossRefGoogle Scholar
  37. 37.
    Tolnai, S. A Method for viable cell count. In: Evans, V. J.; Vincent, M. M., eds. Tissue culture association manual. Rockville, MD: Tissue Culture Association; 1975:37–39.Google Scholar
  38. 38.
    Turano, A.; Scura, G.; Caruso, A., et al. Inhibitory effect of papaverine on HIV replication in vitro. AIDS Res. Hum. Retroviruses 5:183–192; 1989.PubMedGoogle Scholar
  39. 39.
    Tyson, C. A.; Stacey, N. H.In vitro screens from CNS, liver, and kidney for systemic toxicity. Toxicol. Ind. Health 5:107–132; 1989.PubMedGoogle Scholar
  40. 40.
    Tyson, C. A.; Green, G. E. Cytotoxicity measures: choices and methods. In: Rauckman, E. J.; Padilla, G. M., ed. The isolated hepatocytes. New York: Academic Press; 1987:119–158.Google Scholar
  41. 41.
    Virag, R. Intracavernous injection of papaverine for erectile failure. [Letter to the editor]. Lancet 2:938: 1982.PubMedCrossRefGoogle Scholar
  42. 42.
    Vaziri, N. D.; Stokes, J.; Treadwell, T. R. Lactic acidosis, a complication of papaverine overdose. Clin. Toxicol. 18:417–423; 1981.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilen, G.; Ylitalo, P. Metabolism of [14C]papaverine in man. J. Pharm. Pharmacol., 34: 264–266; 1982.PubMedGoogle Scholar
  44. 44.
    Wilson, R. F.; Carl, W.; White, C. W. Serious ventricular dysrhythmias after intracoronary papaverine. Am. J. Cardiol. 62:1301–1302; 1988.PubMedCrossRefGoogle Scholar
  45. 45.
    Williams, J.; Foster, P. M. The production of lactate and pyruvate as sensitive indices of altered rat sertoli cell functionin vitro following the addition of various toxicants. Toxicol. Appl. Pharmacol. 94:160–170; 1988.PubMedCrossRefGoogle Scholar
  46. 46.
    Zimmerman, H. J. Papaverine revisited as hepatotoxin. N. Engl. J. Med. 281:1364–1365; 1969.PubMedCrossRefGoogle Scholar
  47. 47.
    Zorgniotti, A. W.; Lefleur, R. S. Auto-injection of the corpus cavernosum with a vasoactive drug combination for vasculogenic impotence. J. Urol. 133:39; 1985.PubMedGoogle Scholar

Copyright information

© Tissue Culture Association 1990

Authors and Affiliations

  • Julio C. Davila
    • 1
  • Chandrasekara G. Reddy
    • 1
  • Patrick J. Davis
    • 1
  • Daniel Acosta
    • 1
  1. 1.Department of Pharmacology and Toxicology and Department of Medicinal and Natural Products Chemistry, College of PharmacyThe University of Texas at AustinAustin

Personalised recommendations