Skip to main content
Log in

Ciliated cells in vitamin A-deprived cultured hamster tracheal epithelium do divide

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

The pseudostratified tracheal epithelium, composed of a heterogeneous phenotypically varying cell population, was studied with respect to the in vitro cell proliferative activity of differentiated epithelial cells. Ciliated tracheal epithelial cells so far have been considered to be terminally differentiated, nonproliferating cells. Tracheal organ cultures obtained from vitamin A-deprived Syrian Golden hamsters were cultured in a vitamin A-deficient, serum-free, hormone-supplemented medium. In vitamin A-deprived tracheal epithelium treated with physiologically active all-trans retinol and low cigarette-smoke condensate concentrations it is possible to stimulate the cell proliferation of both basal and columnar cells. Therefore, the probability of finding proliferating columnar cells was increased compared with the in vivo and the vitamin A-deprived situation in which cell proliferative activity is relatively low. In the presence of cigarette-smoke condensate in a noncytotoxic concentration, basal, small mucous granule, ciliated, and indifferent tracheal epithelial cells incorporated [methyl-3H]-thymidine into the DNA during the S phase. The finding that ciliated cells were labeled was supported by serial sections showing the same labeled ciliated cell in two section planes separated by 2 to 3 μm, without labeled epithelial cells next to the ciliated cell. Furthermore, a ciliated tracheal epithelial cell incorporating [methyl-3H]thymidine into DNA was also seen in tracheal cultures of vitamin A-deprived hamsters treated with all-trans retinol in a physiologic concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McDowell, E. M. Histogenesis and morphogenesis of bronchial neoplasms. In: Shimasato, Y.; Melamed, M. R.; Nettesheim. P., eds. Morphogenesis of lung cancer, vol 1. Boca Raton: CRC Press; 1982:1–36.

    Google Scholar 

  2. Schultze, B.; Oehlert, W. Autoradiographic investigation of incorporation of3H-thymidine into cells of the rat and mouse. Science 131:737–738; 1960.

    Article  PubMed  CAS  Google Scholar 

  3. Bindreiter, M.; Schuppler, J.; Stockinger, L. Zellproliferation und Differenzierung im Trachealepithel der Ratte. Exp. Cell Res. 50:377–382; 1968.

    Article  Google Scholar 

  4. Kaufman, D. G.; Baker, M. S.; Harris, C. C., et al. Coordinated biochemical and morphologic examination of hamster tracheal epithelium. JNCI 49:783–792; 1972.

    PubMed  CAS  Google Scholar 

  5. Harris, C. C.; Silverman, T.; Smith, J. M., et al. Proliferation of tracheal epithelial cells in normal and vitamin A-deficient Syrian golden hamsters. JNCI 51:1059–1062; 1973.

    PubMed  CAS  Google Scholar 

  6. Boren, H. B.; Pauley, J.; Wright, E. C., et al. Cell populations in the hamster tracheal epithelium in relation to vitamin A status. Int. J. Vit. Nutr. Res. 44:382–390; 1974.

    CAS  Google Scholar 

  7. Gordon, R. E.; Lane, B. P. Cytokinetics of rat tracheal epithelium stimulated by mechanical trauma. Cell Tissue Kinet. 10:171–181; 1977.

    PubMed  CAS  Google Scholar 

  8. Boren, H. G.; Paradise, L. J. Cytokinetics of lung. In: Harris, C. C., ed. Pathogenesis and therapy of lung cancer, vol 10. New York: Marcell Dekker; 1978:369–418.

    Google Scholar 

  9. McDowell, E. M.; Becci, P. J.; Schürch, W., et al. The respiratory epithelium: VII. Epidermoid metaplasia of hamster tracheal epithelium during regeneration following mechanical injury. JNCI 62:995–1008; 1979.

    PubMed  CAS  Google Scholar 

  10. Chopra, D. P. Cell dynamics in explants derived from tracheas of hamsters fed normal and vitamin A-deficient diets. Cell Tissue Kinet. 16:155–165; 1983.

    PubMed  CAS  Google Scholar 

  11. McDowell, E. M.; Keenan, K. P.; Huang, M. Effects of vitamin A-deprivation on hamster tracheal epithelium: a quantitative morphologic study. Virchows Arch B Cell Pathol. 45:197–219; 1984.

    CAS  Google Scholar 

  12. McDowell, E. M.; Keenan, K. P.; Huang, M. Restoration of mucociliary tracheal epithelium following deprivation of vitamin A: a quantitative morphologic study. Virchows Arch B Cell Pathol 45:221–240; 1984.

    Article  CAS  Google Scholar 

  13. Rutten, A. A. J. J. L.; Wilmer, J. W. G. M.; Beems, R. B. Effects of all-trans retinol and cigarette smoke condensate on hamster tracheal epithelium in organ culture: I. A cell proliferative study. Virchows Archiv. B. Cell Pathol. 55:167–175; 1988.

    CAS  Google Scholar 

  14. Rutten, A. A. J. J. L.; Beems, R. B.; Wilmer, J. W. G. M. Effects of all-trans retinol and cigarette smoke condensate on hamster tracheal epithelium in organ culture. II. A histomorphological study. Virchows Archiv. B Cell Pathol. 55:177–186; 1988.

    CAS  Google Scholar 

  15. Dalhamn, T.: The effect of cigarette smoke on ciliary activity in the upper respiratory tract. Arch. Otolaryngol. 70:166–167; 1959.

    CAS  Google Scholar 

  16. Ballenger, J. J. Experimental effect of cigarette smoke on human respiratory cilia. N. Engl. J. Med. 263:832–835; 1960.

    Article  PubMed  CAS  Google Scholar 

  17. Rutten, A. A. J. J. L.; Jongen, W. M. F.; de Haan, L. H. J., et al. Effect of retinol and cigarette smoke condensate on dye-coupled intercellular communication between hamster tracheal epithelial cells in serum-free medium. Carcinogenesis 9:315–320; 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Clamon, G. H.; Sporn, M. B.; Smith, J. M., et al. α- and β-retinyl acetate reverse metaplasias of vitamin A deficiency in hamster trachea in organ culture. Nature 250:64–66; 1974.

    Article  PubMed  CAS  Google Scholar 

  19. Rutten, A. A. J. J. L.; Wilmer, J. W. G. M. Effect of cigarette smoke condensate and norharman on the induction of SCEs by direct and indirect mutagens in CHO cells. Mutation Res. 172:61–67; 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Sporn, M. B.; Dunlop, N. M.; Newton, D. L., et al. Relationships between structure and activity of retinoids. Nature 263:110–113; 1976.

    Article  PubMed  CAS  Google Scholar 

  21. Newton, D. L.; Henderson, W. R.; Sporn, M. B. Structure-activity relationships of retinoids in hamster tracheal organ culture. Cancer Res. 40:3413–3425; 1980.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The present study was financially supported by the Scientific Advisory Committee on Smoking and Health (Dutch Cigarette Industry Foundation) and the Ministry of Welfare, Health and Cutural Affairs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutten, A.A.J.J.L., Beems, R.B., Wilmer, J.W.G.M. et al. Ciliated cells in vitamin A-deprived cultured hamster tracheal epithelium do divide. In Vitro Cell Dev Biol 24, 931–935 (1988). https://doi.org/10.1007/BF02623905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623905

Key words

Navigation