Skip to main content
Log in

Effects of substrata and method of tissue dissociation on adhesion, cytoskeleton, and growth of chick retinal pigmented epithelium in vitro

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

In this report we compare attachment, morphology, and growth of retinal pigmented epithelial (RPE) cells isolated by either EDTA or dispase digestion and plated onto either uncoated substrata (plastic or glass) or substrata derivatized by covalent conjugation of proteins of reconstituted basement membrane gel. We show that the derivatized substrata promote better initial attachment and subsequent cell growth than the uncoated substrata. These effects are independent of the method of dissociation of cells from the tissue. Cell morphology, however, is strongly affected by the method used for tissue dispersion. The dispase-dissociated cells are very flat, display a circumferential arrangement of microfilaments and elaborate extensive arrays of vinculin-containing cell-to-cell junctions. In contrast, EDTA-dissociated cells are much less spread, display straight microfilament bundles criss-crossing the cytoplasm and have less extensive cell-to-cell junctions. The protein-derivatized substrata also promote maintenance of differentiated traits such as pigmentation, by the RPE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggeler, J.; Frisch, S. M.; Werb, Z. Changes in cell shape correlate with collagenase gene expression in rabbit synovial fibroblasts. J. Cell Biol. 98:1662–1671; 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Albini, A.; Iwamoto, Y.; Kleinman, H. K., et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47:3239–3245; 1987.

    PubMed  CAS  Google Scholar 

  3. Aplin, J. D.; Hughes, R. C. Protein-derivatised glass coverslips for the study of cell-to-substratum adhesion. Anal. Biochem. 113:144–148; 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Aptel, J. D.; Carroy, A.; Dejardin, P., et al. Adsorption and desorption of synthetic and biological macromolecules at solid-liquid interfaces: equilibrium and kinetic properties. Am. Chem. Soc. Symp. 343:222–238; 1987.

    CAS  Google Scholar 

  5. Bendayan, M.; Duhr, M.-A.; Gingres, D. Studies on pancreatic acinar cells in tissue culture: basal lamina (basement membrane) matrix promotes three-dimensional reorganization. Eur. J. Cell Biol. 42:60–67; 1986.

    PubMed  CAS  Google Scholar 

  6. Ben-Ze'ev, A.; Amsterdam, A. Regulation of cytoskeletal proteins involved in cell contact formation during differentiation of granulosa cells on extracellular matrix. Proc. Natl. Acad. Sci. USA 83:2894–2898; 1986.

    Article  PubMed  Google Scholar 

  7. Bissell, D. M.; Arenson, D. M.; Maher, J. J., et al. Support of cultured hepatocytes by a laminin-rich gel. J. Clin. Invest. 79:801–812; 1987.

    PubMed  CAS  Google Scholar 

  8. Bissell, M. J.; Hall, M. G.; Parry, G. How does the extracellular matrix direct gene expression? Theor. Biol. 99:31–68; 1982.

    Article  CAS  Google Scholar 

  9. Brunner, G.; Nitzgen, B.; Wieser, R., et al. Importance of the contact environment in the behavior of mammalian cells In: Sato, G. H.; Pardee, A. B.; Sirbasku, D. A., eds. Growth of cells in hormonally defined media. Cold Spring Harbor, NY: Cold Spring Harbor Conference on Cell Proliferation 9;1982:179–201.

    Google Scholar 

  10. Burridge, K. Substrate adhesions in normal and transformed fibroblasts: organization and regulation of cytoskeletal membrane and extracellular matrix components at focal contacts. Cancer Rev. 4:18–79; 1986.

    Google Scholar 

  11. Crawford, B. J.; Cloney, R. A.; Cohn, R. D. Cloned pigmented retinal cells; the effects of cytochalasin B on ultrastructure and behavior. Z. Zellforsch. 130:135–151; 1972.

    Article  PubMed  CAS  Google Scholar 

  12. Crawford, B. J. Cloned pigmented retinal epithelium The role of microfilaments in the differentiation of cell shape. J. Cell Biol. 81:301–315; 1979.

    Article  PubMed  CAS  Google Scholar 

  13. Crawford, B. J.; Vielkind, U. Location and possible function of fibronectin and laminin in clones of chick retinal pigmented epithelial cells. In Vitro 21:79–87; 1985.

    CAS  Google Scholar 

  14. Emonard, H.; Calle, A.; Grimand, J.-A., et al. Interactions between fibroblasts and a reconstituted basement membrane matrix. J. Invest. Dermatol. 89:156–163; 1987.

    Article  PubMed  CAS  Google Scholar 

  15. Folkman, J.; Moscona, A. Role of cell shape in growth control. Nature 273:345–349; 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Geiger, B.; Avnur, Z.; Volberg, T. et al. Molecular domains of adherens junctions. In: Edelman, G. M.; Thiery, J. P., eds. The cell in contact. John Wiley & Sons; 1985:461–489.

  17. Gospodarowicz, D. Preparation of extracellular matrices produced bycultured bovine corneal endothelial cells and PF-HR-9 endodermal cells: their use in cell culture. In: Barnes, D. W.; Sirbasku, D. A.; Sato, G. H., eds. Methods for preparation of media supplements, and substrate for serum-free animal cell culture. New York: A. R. Liss; 1984:275–293.

    Google Scholar 

  18. Grant, D. S.; Kleinman, H. K.; Leblond, C. P., et al. The basement-membrane-like matrix of the mouse EHS tumor: II. immunohistochemical quantitation of six of its components. Am. J. Anat. 174:387–398; 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Hadley, M. A.; Byers, S. W.; Suarez-Quion, C. A., et al. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J. Cell Biol. 101:1511–1522; 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Hong, H. L.; Brunette, D. M. Effect of cell shape on proteinase secretion by epithelial cells. J. Cell Sci. 87:259–267; 1987.

    PubMed  CAS  Google Scholar 

  21. Ingber, D. E.; Jamieson, J. D. Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces transduced over basement membrane. In: Andersson, L. C.; Gohmberg, C. G.; Ekblom, P., eds. Gene expression during normal and malignant differentiation. London: Academic Press; 1985:13–32.

    Google Scholar 

  22. Ingber, D. E.; Madri, J. A.; Jamieson, J. D. Basement membrane as a spatial organiser of polarized epithelia. Am. J. Pathol. 122:129–139; 1986.

    PubMed  CAS  Google Scholar 

  23. Kleinman, H. K.; McGarvey, M. L.; Mossel, J. R. et al. Basement membrane complexes with biological activity. Biochemistry 28:312–318; 1986.

    Article  Google Scholar 

  24. Li, M. J.; Aggeler, J.; Farson, D. A., et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136–140; 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Matsumara, T.; Nitta, K.; Yoshikawa, M., et al. Action of bacterial neural protease on the dispersion of mammalian cells in tissue culture. Jpn. J. Exp. Med. 45:383–392; 1975.

    Google Scholar 

  26. Matsumara, T.; Yamanaka, T.; Hashizume, S., et al. Tissue dispersion, cell harvest and fluid suspension culture by the use of bacterial neutral protease. Jpn. J. Exp. Med. 45:377–382; 1975.

    Google Scholar 

  27. Middleton, C. A. The effects of cell-cell contact on the spreading of pigmented retinal epithelial cells in culture. Exp. Cell Res. 109:349–359; 1977.

    Article  PubMed  CAS  Google Scholar 

  28. Newsome, D. A. Retinal pigmented epithelium culture: current applications. Trans. Ophthal. Soc. UK 103:458; 1983.

    PubMed  Google Scholar 

  29. Okada, T. S. Cellular metaplasia or transdifferentiation as a model for retinal cell differentiation. Curr. Top. Dev. Biol. 16:349–380; 1980.

    PubMed  CAS  Google Scholar 

  30. Ono, J.; Takoki, R.; Fukuma, M. Preparation of single cells from pancreatic islets of adult rat by the use of dispace. Endocrinol. Jpn. 24:265–270; 1977.

    PubMed  CAS  Google Scholar 

  31. Opas, M. The transmission of forces between cells and their environment. In: Bereiter-Hahn, J.; Anderson, O. R.; Reif, W. E., eds. Cytomechanics. Heidelberg: Springer Verlag; 1987:273–285.

    Google Scholar 

  32. Opas, M. The focal adhesions of chick retinal pigmented cells. Can. J. Biochem. Cell Biol. 63:533–563; 1985.

    Google Scholar 

  33. Opas, M.; Turksen, K.; Kalnins, V. I. Adhesiveness and distribution of vinculin and spectrin in retinal pigmented epithelial cells during growth and differentiation in vitro. Dev. Biol. 107:269–280; 1985.

    Article  PubMed  CAS  Google Scholar 

  34. Patterson, M. K., Jr. Measurement of growth and viability of cells in culture. Methods Enzymol. 58:141–152; 1979.

    Article  PubMed  Google Scholar 

  35. Paulsson, M.; Aumailley, M.; Deutzman, R., et al. Laminininidogen complex. Extraction with chelating agents and structural characterization. Eur. J. Biochem. 166:11–19; 1987.

    Article  PubMed  CAS  Google Scholar 

  36. Reh, T. A.; Nagy, T.; Gretton, H. Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature 330:68–71; 1987.

    Article  PubMed  CAS  Google Scholar 

  37. Reid, L. M.; Jefferson, D. M. Cell culture studies using extracts of extracellular matrix to study growth and differentiation in mammalian cells. In: Mather, J. P., ed. Mammalian cell culture, New York: Plenum Press; 1984:239–280.

    Google Scholar 

  38. Spurr, S. J.; Gipson, I. K. Isolation of corneal epithelium with dispase II or EDTA. Invest. Ophthalmol. Vis. Sci. 26:818–827; 1985.

    PubMed  CAS  Google Scholar 

  39. Surgue, S. P.; Hay, E. D. Response of basal epithelial cell surface and cytoskeleton to solubilized extracellular matrix molecules. J. Cell Biol. 91:45–54; 1981.

    Article  Google Scholar 

  40. Takaoka, T.; Yosumoto, S.; Katsuta, H. A simple method for the cultivation of rat liver cells. Jpn. J. Exp. Med. 45:317–326; 1975.

    PubMed  CAS  Google Scholar 

  41. Turksen, K.; Aubin, J. E.; Sodek, Y., et al. Changes in the distribution of laminin, fibronectin, type IV collagen and heparan sulfalte proteoglycan during colony formation by chick retinal pigment epithelial cells in vitro. Collagen Rel. Res. 4:413–426; 1984.

    CAS  Google Scholar 

  42. Turksen, K.; Kleinman, H. K.; Kalnins, V. I. Basement membrane (BM) matrisome affected growth, pigmentation and cytoskeletal protein distribution in chick retinal pigment epithelial(RPE) cells in culture. J. Cell. Biol. 101:260a; 1985.

    Google Scholar 

  43. Turksen, K.; Opas, M.; Aubin, J. E., et al. Microtubules, microfilaments and adhesion patterns in differentiating chick retinal pigment epithelial (RPE) cells in vitro. Exp. Cell Res. 147:379–391; 1983.

    Article  PubMed  CAS  Google Scholar 

  44. Watt, F. M. The extracellular matrix and cell shape. Trends in Biochemical Science 11:482–485; 1986.

    Article  CAS  Google Scholar 

  45. Yasuda, K. Transdifferentiation of “lentoid” structures in cultures derived from pigmented epithelium was inhibited by collagen. Dev. Biol. 68:618–623; 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Medical Research Council grant MA-9713 and by a grant from the R P Eye Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opas, M., Dziak, E. Effects of substrata and method of tissue dissociation on adhesion, cytoskeleton, and growth of chick retinal pigmented epithelium in vitro. In Vitro Cell Dev Biol 24, 885–892 (1988). https://doi.org/10.1007/BF02623898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623898

Key words

Navigation