Skip to main content
Log in

Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Vascular endothelial cells modulate their structure and functions in response to changes in hemodynamic forces such as fluid shear stress. We have studied how endothelial cells perceive the shearing force generated by blood flow and the substance(s) that may mediate such a response. We identify cytoplasmic-free calcium ion (Ca++), a major component of an internal signaling system, as a mediator of the cellular response to fluid shear stress. Cultured monolayers of bovine aortic endothelial cells loaded with the highly fluorescent Ca++-sensitive dye Fura 2 were exposed to different levels of fluid shear stress in a specially designed flow chamber, and simultaneous changes in fluorescence intensity, reflecting the intracellular-free calcium concentration ([Ca++] i ), were monitored by photometric fluorescence microscopy. Application of shear stress to cells by fluid perfusion led to an immediate severalfold increase in fluorescence within 1 min, followed by a rapid decline for about 5 min, and finally a plateau somewhat higher than control levels during the entire period of the stress application. Repeated application of the stress induced similar peak and plateau levels of [Ca++] i but at reduced magnitudes of response. These responses were observed even in Ca++-free medium. Thus, a shear stress transducer might exist in endothelial cells, which perceives the shearing force on the membrane as a stimulus and mediates the signal to increase cytosolic free Ca++.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abboud, C. N., Scully, S. P., Lichtman, A. H., et al. The requirements for ionized calcium and magnesium in lymphocyte proliferation. J. Cell. Physiol. 22:64–72; 1985.

    Article  Google Scholar 

  2. Ando, J., Nomura, H., Kamiya, A. The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc. Res. 33:62–70; 1987.

    Article  PubMed  CAS  Google Scholar 

  3. Becker, P. L., Fay, F. S. Photobleaching of Fura-2 and its effects on determination of calcium concentrations. Am. J. Physiol. 253:C613–618; 1987.

    PubMed  CAS  Google Scholar 

  4. Berk, B. C., Brock, T. A., Webb, R. C., et al. Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. J. Clin. Invest. 75:1083–1086; 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Berk, B. C.; Alexander, R. W.; Brock, T. A., et al. Vasocontriction: A new activity for platelet-derived growth factor. Science 232:87–90; 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Berridge, M. J.. The interaction of cyclic nucleotides and calcium in the control of cellular activity. In: Greengard, P.; Robinson, G. A., eds. Advances in cyclic nucleotide research 6. New York: Raven Press, 1975:1–98.

    Google Scholar 

  7. Berridge, M. J. The molecular basis of communication within the cell. Sci. Am. 253:124–134; 1985.

    Article  Google Scholar 

  8. Carafoli, E.; Penniston, J. T. The calcium signal. Sci. Am. 253:50–58; 1985.

    Google Scholar 

  9. Chen, T. C. Microscopic demonstration of mycoplasma contamination in cell culture media. TCA Manual. 1:229–232; 1976.

    Article  Google Scholar 

  10. Cox, R. H. Physiology and hemodynamic of the macrocirculation. In: Stegbens, W. E., ed. Hemodynamics and the blood wall. Springfield, IL: C. C. Thomas, 1979:75–156.

    Google Scholar 

  11. Davies, P. F.. Quantitative aspects of endocytosis in cultured endothelial cells. In: Jaffe, E. A., ed. Biology of endothelial cells. Boston: Martinus Nijhoff Publishers, 1984:365–376.

    Google Scholar 

  12. Dewey, C. F., Bussolari, S. R., Gimbrone, M. A., et al. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Engr. 103:177–184; 1981.

    Article  Google Scholar 

  13. Frangos, J. A., Eskin, S. G.; McIntire, L. V., et al. Flow effects on prostacyclin production by cultured human endothelial cells. Science 22:1477–1479; 1985.

    Article  Google Scholar 

  14. Franke, R. P., Grafe, M., Schnittler, H., et al. Induction of human vascular endothelial stress fibers by fluid shear stress. Nature 307:648–649; 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Fraser, D.; Jones, G.; Kooh, S. W., et al. Analysis of calcium in biological fluids. In: Tietz, N. W., ed. Fundamentals of clinical chemistry. W. B. Saunders Company 1987∶716–721.

  16. Grynkiewicz, G., Poenie, M., Tsien, R. Y. A new generation of calcium indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–3450; 1985.

    PubMed  CAS  Google Scholar 

  17. Guyton, J. R., Hartley, C. J. Flow restriction of one carotid artery in juvenile rats inhibits growth of arterial diameter. Am. J. Physiol. 248:H540–546; 1985.

    PubMed  CAS  Google Scholar 

  18. Hudicka, O Growth of vessels—historical review. Prog. Appl. Microcirc. 4:1–8; 1984.

    Google Scholar 

  19. Hunt, C. C. The physiology of muscle receptors. In: Hunt, C. C., ed. Muscle receptors. New York: Springer-Verlag, 1974:192–230.

    Google Scholar 

  20. Jaffe, E. A. Physiologic functions of normal endothelial cells. Ann. NY. Acad. Sci. 454:279–291; 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Kamiya, A., Togawa, T Adaptive regulation of wall stress to flow change in the canine carotid artery. Am. J. Physiol. 239:H14-H21; 1980.

    PubMed  CAS  Google Scholar 

  22. Lansman, J. B., Hallman, T. J., Rink, T. J. Single stretchactivated ion channels in vascular endothelial cells as mechanotransducers. Nature 325:811–813; 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Lartigue, O. G. Calcium and ionophore A-23187 as initiators of DNA replication in the pluripotent haemopoietic stem cell. Cell. Tissue Kinet. 9:533–540; 1976.

    Google Scholar 

  24. Maino, V. C.; Green, N. M.; Crumpton, M. J. The role of calcium ions in initiating transformation of lymphocytes. Nature 252:324–327; 1974.

    Article  Google Scholar 

  25. Masuda, H.; Shozawa, T.; Hosoda, S., et al. Cytoplasmic microfilaments in endothelial cells of flow loaded canine carotid arteries. Heart Vessels 1:65–69; 1985.

    Article  PubMed  CAS  Google Scholar 

  26. McNeil, P. L., McKenna, M. P., Taylor, D. L. A transient rise in cytosolic calcium follows stimulation of quiescent cells with growth factors and is inhibitable with phorbol myristate acetate. J. Cell. Biol. 101:370–372; 1985.

    Article  Google Scholar 

  27. Moisescu, D. G.; Push, H. A. A pH-metric method for the determination of the relative concentration of calcium to EGTA. Pflugers. Arch. 355:R122; 1975.

    Google Scholar 

  28. Moolenaar, W. H.; Tertoolen, L. G. J.; de Laat, S. W. Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts. J. Biol. Chem. 259:8066–8069; 1984.

    PubMed  CAS  Google Scholar 

  29. Netland, P. A., Zetter, B. R., Via, D. P., et al. In situ labeling vascular endothelium with fluorescent acetylated low density lipoprotein. Histochem. J. 17:1309–1320; 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Patton, H. D. Receptor mechanism. In: Ruch, T. C.; Patton, H. D., eds. Physiology and biophysics. Philadelphia: W. B. Saunders and Company, 1965:95–112.

    Google Scholar 

  31. Prados, J. W., Peebles, F. N. Two-dimensional laminar-flow analysis, utilizing a doubly refracting liquid. AICHE 5:225–234; 1959.

    Article  CAS  Google Scholar 

  32. Rosen, L. A.; Hollis, T. M., Sharma M. G. Alterations in bovine endothelial histidine decarboxylase activity following exposure to shearing stresses. Exp. Mol. Pathol. 20:329–343; 1974.

    Article  PubMed  CAS  Google Scholar 

  33. Rushmer, R. F. Control of systemic arterial pressure. In: Cardiovascular dynamics. Philadelphia: W. B. Saunders Company, 1976:186–196.

    Google Scholar 

  34. Schlighting, H. Turbulent flow through pipes. In: Boundary layer theory. New York: McGraw Hill Co., 1960:502–533.

    Google Scholar 

  35. Schmidt, R. F. Fundamentals of sensory physiology. New York: Springer-Verlag, 1981:95–101.

    Google Scholar 

  36. Schwartz, S. M. Selection and characterization of bovine aortic endothelial cells. In Vitro 14:966–980; 1978.

    Article  PubMed  CAS  Google Scholar 

  37. Stebens, W. E. The role of hemodynamics in the pathogenesis of athereosclerosis. Prog. Cardiovasc. Dis. 18:89–103; 1975.

    Article  Google Scholar 

  38. Tsien, R. Y., Pozzan, T., Rink, T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell. Biol. 94:325–334; 1982.

    Article  PubMed  CAS  Google Scholar 

  39. Williams, D. A.; Fogarty, K. E., Tsien, R. Y., et al. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318:558–561; 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partly supported by a grant-in-aid, for Special Project Research no. 61132008, from the Japanese Ministry of Education, Science and Culture and a research fund from the Atherosclerosis Study Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, J., Komatsuda, T. & Kamiya, A. Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell Dev Biol 24, 871–877 (1988). https://doi.org/10.1007/BF02623896

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623896

Key words

Navigation