Skip to main content
Log in

Liver epithelial cell migration induced by epidermal growth factor or transforming growth factor alpha is associated with changes in the gene expression of secreted proteins

  • Rapid Communications in Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Editor's Statement Mitogen-stimulated gnees are an active area of study with fibroblastic systems. In this paper the approach is extended to epithelial cells and functional correlations are also made.

Summary

Rat liver epithelial cells are induced to migrate by epidermal growth factor (EGF) or transforming growth factor alpha (TGF-α) in serum-free medium supplemented with insulin. Immunohistological staining of the migration tracks containing laminin and fibronectin has allowed a quantitative analysis of the process. The growth factor-induced migration is relatively slow, but very efficient. Between 24 and 48 h after exposure to EGF (or TGF-α), 50 to 70% of the cells have migrated away from their site of initial attachment and spreading. This delayed effect of the interaction of the receptor with its ligands is associated with changes in gene expression, but is not associated with a stimulation of cell proliferation. In serum-free medium supplemented with insulin, the cells secrete six major proteins, as revealed by SDS-polyacrylamide gel electrophoresis. The media of cultures supplemented with insulin plus EGF (or TGF-α) contain in addition two new proteins and an increased amount of fibronectin. One secreted protein is synthesized in significantly reduced amounts. The most conspicuously EGF-induced protein (EIP-1, Mr 47 000) is detected within 2 h, depends on the continued presence of the growth factor, and has not been detected as bound to the substratum. The stringent regulation of EIP-1 suggests that this gene product might participate in the modulation of the changes induced by the growth factor. The system is being used for the further analysis of the regulation of gene expression by EGF and of the migration of normal and neoplastically transformed epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abercrombie, M. The crawling movement of metazoan cells. In: Bellairs, R.; Curtis, A.; Dunn, G., eds. Cell behaviour. Cambridge, University Press; 1982: 19–48.

    Google Scholar 

  2. Albrecht Bühler, G. The phagokinetic tracks of 3T3 cells. Cell 11: 395–404; 1977.

    Article  Google Scholar 

  3. Ali, I. U.; Hynes, R. O. Effects of LETS protein on cell motility. Cell 14: 439–445; 1978.

    Article  PubMed  CAS  Google Scholar 

  4. Bade, E. G.; Nitzgen, B.; Lögl, C. Stimulation of growth and migration of liver epithelial cells by insulin and epidermal growth factor in serum-free medium. Immunohistological detection of migration tracks. Fresenius Z. Anal. Chem. 317: 741–742; 1984.

    Article  CAS  Google Scholar 

  5. Bade, E. G.; Nitzgen, B. Extracellular matrix (ECM) modulates the EGF-induced migration of liver epithelial cells in serum-free, hormone-supplemented medium. In Vitro Cell. Devel. Biol. 21: 245–248; 1985.

    Article  CAS  Google Scholar 

  6. Barnes, D.; Sato, G. Methods for growth of cells in serum-free medium. Anal. Biochem. 102: 255–270; 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Bender, W. Homeotic gene products as growth factors. Cell 43: 559–560; 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Birchmeier, W. Fibroblast's focal contacts. Trends Biochem. Sci. 6: 234–237; 1981.

    Article  CAS  Google Scholar 

  9. Blay, J.; Brown, K. D. Epidermal growth factor promotes the chemotactic migration of cultured rat intestinal epithelial cells. J. Cell Physiol. 124: 107–112; 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Bucher, N. L. R.; Patel, U.; Cohen, S. Hormonal factors in liver growth. Adv. Enzyme Regul. 16: 205–213; 1978.

    Article  CAS  Google Scholar 

  11. Carpenter, G.; Cohen, S. Epidermal growth factor. Ann. Rev. Biochem. 48: 193–216; 1979.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, L. B.; Gudor, R. C.; Sun, T. T., et al. Control of a cell surface major glycoprotein by epidermal growth factor. Science 197: 776–778; 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Chinkers, M.; McKanna, J. A.; Cohen, S. Rapid induction of morphological changes in human carcinoma cells A 431 by epidermal growth factor. J. Cell Biol. 83: 260–265; 1979.

    Article  PubMed  CAS  Google Scholar 

  14. Cohen, S. Epidermal growth factor. In Vitro Cell Devel. Biol. 23: 239–246; 1987.

    CAS  Google Scholar 

  15. Cooper, A. R.; Taylor, A.; Hogan, B. L. M. Changes in the rate of laminin and entactin synthesis in F9 embryonal carcinoma cells treated with retinoic acid and cyclic AMP. Devel. Biol. 99: 510–516; 1983.

    Article  CAS  Google Scholar 

  16. Ekblom, P. Basement membrane proteins and growth factors in kidney differentiation. In: R. L. Trelstad, ed. The role of extracellular matrix in development. New York: Alan Liss; 1984; 173–206.

    Google Scholar 

  17. Folkman, J. Angiogenesis. In: Jaffe, E. A., ed. Biology of endothelial cells. Boston, Nijhoff; 1984: 412–428.

    Google Scholar 

  18. Grotendorst, G. R.; Seppä, H. E. J.; Kleinman, H. K., et al. Attachment of smooth muscle cells to collagen and their migration towards platelet-derived growth factor. Proc. Natl. Acad. Sci. 78: 3669–3672; 1981.

    Article  PubMed  CAS  Google Scholar 

  19. Hay, E. D. Extracellular matrix. J. Cell. Biol. 91: 205s-223s; 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Hujanen, E. S.; Terranova, V. P. Migration of tumor cells to organ-derived chemoattractants. Cancer Res. 45: 3517–3521; 1985.

    PubMed  CAS  Google Scholar 

  21. Hynes, R. O. Molecular biology of fibronectin. Ann. Rev. Cell Biol. 1: 67–90; 1985.

    PubMed  CAS  Google Scholar 

  22. LeDouarin, N. M. Cell migrations in embryos. Cell 38: 353–360; 1984.

    Article  CAS  Google Scholar 

  23. Liotta, L. A.; Rao, C. N.; Wewer, U. M. Biochemical interactions of tumor cells with the basement membrane. Ann. Rev. Biochem. 55: 1037–1057; 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Marceau, N.; Goyette, R; Valet, J. P., et al. The effect of dexamethasone on formation of a fibronectin extracellular matrix by rat hepatocytes in vitro. Exp. Cell Res. 125: 497–502; 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Martinez-Hernández, A. The hepatic extracellular matrix. Lab. Invest. 51: 57–73; 1984.

    PubMed  Google Scholar 

  26. McCarthy, J. B.; Furcht, L. T. Laminin and fibronectin promote the directed migration of B16 mouse melanoma cellsin vitro.

  27. Oliver, N.; Newby, R. F.; Furcht, L. T., et al. Regulation of fibronectin synthesis by glucocorticoids in human fibrosarcoma cells and normal fibroblasts. Cell 33: 287–296; 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Postlethwaite, A. E.; Snyderman, R.; Kang, A. H. The chemotactic attraction of human fibroblasts to a lymphocyte-derived factor. J. Exp. Med. 144: 1188–1203; 1976.

    Article  PubMed  CAS  Google Scholar 

  29. Romisch, K.; Zoller, J.; Bade, E. G. In vitro migration and malignant phenotype of rat liver epithelial cells. Eur. J. Cell Biol. 42:suppl. 15, 46; 1986.

    Google Scholar 

  30. Rojkind, M.; Gatmaitan, Z.; Mackensen, S.; et al. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J. Cell Biol. 87: 255–263; 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Ross, R. Platelet-derived growth factor. Handb. Exp. Pharmacol. 57: 133–159; 1981.

    CAS  Google Scholar 

  32. Sage, H.; Tupper, J.; Bramson, R. Endothelial cell in vitro is associated with increased secretion of an Mr 43,000 glyocoprotein ligand. J. Cell Physiol. 127: 373–387; 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Santarén, J.; Bravo, R. Immediate induction of a 45K secreted glycoprotein by serum and growth factors in quiescent mouse 3T3 cells. Two-dimensional gel analysis. Exp. Cell Res. 168: 495–506; 1987.

    Article  Google Scholar 

  34. Schreiber, A. B.; Winkler, M. E.; Derynck, R. Transforming growth factor-α: a more potent angiogenic mediator than epidermal growth factor. Science 232: 1250–1253; 1986.

    Article  PubMed  CAS  Google Scholar 

  35. Sholley, M. M.; Ferguson, G. P.; Seibel, H. R., et al. Mechanisms of neovasculatization. Vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51: 624–633; 1984.

    PubMed  CAS  Google Scholar 

  36. Thiery, J. P.; Duband, J. L.; Tucker, G. C. Cell migration in the vertebrate embryo: role of cell adhesion and tissue environment in pattern formation. Ann. Rev. Cell Biol. 1: 91–113; 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Timpl, R.; Dziadek, M. Structure, development and molecular pathology of basement membranes. Int. Rev. Exp. Path. 29: 1–112; 1986.

    PubMed  CAS  Google Scholar 

  38. Trelstad, R. L. ed. The role of extracellular matrix in development. Proc. 42nd Symp. Soc. Devel. Biol. New York: Alan Liss; 1985.

    Google Scholar 

  39. Trinkhaus, J. P. Cells into organs. 2nd ed. Englewood Cliffs, Prentice Hall; 1984.

    Google Scholar 

  40. Westermark, B.; Magnusson, A.; Heldin, C.-H. Effect of epidermal growth factor on membrane motility and cell locomotion in cultures of human clonal glioma cells. J. Neurosc. Res. 8: 491–507; 1982.

    Article  CAS  Google Scholar 

  41. Zetter, B. R. Migration of capillary endothelial cells is stimulated by tumour-derived factors. Nature 285: 31–43; 1980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to the memory of Dr. Luis F. Leloir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bade, E.G., Feindler, S. Liver epithelial cell migration induced by epidermal growth factor or transforming growth factor alpha is associated with changes in the gene expression of secreted proteins. In Vitro Cell Dev Biol 24, 149–154 (1988). https://doi.org/10.1007/BF02623892

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623892

Key words

Navigation