Skip to main content
Log in

Modulation of β-receptors as adult and neonatal cardiac myocytes progress into culture

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Modulation of β-adrenergic receptors and their ability to respond to β-receptor stimulation was studied in cultures of adult and neonatal rat cardiac myocytes. The radioligand iodocyanopindolol (125I-CYP) was used to identify β-adrenoceptors on the intact cells.125I-CYP was found to bind to the receptors in a stereospecific and saturable manner. Freshly isolated neonatal and adult myocytes both had a receptor density of approximately 50 fmol/mg protein. The number of β-receptors per milligram protein was similar during a 10-d culture period for adult myocytes but increased after a 5-d culture period for neonatal myocytes. Both cell types responded to β-receptor stimulation with isoproterenol by a twofold increase in the concentration of cAMP and this response increased with time in culture. The number of receptors as well as the response to isoproterenol was similar for neonatal myocytes cultured on laminin, collagen type I, or on uncoated culture dishes. From these data we conclude that cultured cardiac myocytes maintain functional β-receptors as they progress into culture, and the expression of β-receptors is not influenced by culture substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander, R. W.; Williams, L. T.; Lefkowitz, R. J. Identification of cardiac adrenergic receptors by (−)-(3H)-alprenolol binding. Proc. Natl. Acad. Sci. USA 72: 1564–1568; 1975.

    Article  PubMed  CAS  Google Scholar 

  2. Atlas, D.; Hanski, E.; Levetzki, A. Eighty thousand β-adrenergic receptors in a single cell. Nature 268: 144–146; 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Barovsky, K.; Brooker, G. (−)-(125I)-Iodopindolol, a new highly selective radioiodinated β-adrenergic receptor antagonist: measurement of β-receptors on intact rat astrocytoma cells. J. Cyclic Nucleotide Res. 6:297–307; 1980.

    PubMed  CAS  Google Scholar 

  4. Borg, T. K.; Rubin, K.; Lundgren, E., et al. Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev. Biol. 104: 86–96; 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Clark, C. M., Jr.; Allen, D. O.; Clark, J. F. Appearances of responses to glucagon in cultured neonatal rat heart cells. Endocrinology 100: 989–993; 1977.

    Article  CAS  Google Scholar 

  6. Clark, W. A., Jr.; Zak, R. Assessment of fractional rates of protein synthesis in cardiac muscle cultures after equilibrium labeling. J. Biol. Chem. 256: 4863–4870; 1981.

    PubMed  CAS  Google Scholar 

  7. Claycomb, W. C.; Burns, A. H.; Shepherd, R. E. Culture of terminally differentiated ventricular cardiac muscle cell: Characterization of exogenous substrate oxidation and the adenylate cyclase system. FEBS Lett. 169: 261–266; 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Claycomb, W. C.; Palazzo, M. C. Culture of terminally differentiated adult cardiac muscle cell: A light and scanning electron microscope study. Dev. Biol. 80: 466–482; 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Cleaver, J. E. Sensitivity of excision repair in normal human, xeroderma pigmentosum variant and cockayne's syndrome fibroblasts to inhibition by cytosine arabinoside. J. Cell. Physiol. 108: 163–173; 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Daly, J. W. Forskolin, adenylate cyclase, and cell physiology: An overview. In: Greengard, P.; Robison, G. A., eds. Advances in cyclic nucleotide and protein phosphorylation research, vol. 17. New York: Academic Press; 1984: 81–89.

    Google Scholar 

  11. Dax, E. M.; Partilla, J. S. Adrenergic ligand liposolubility in membranes. Direct assessment in a Beta-adrenergic binding system. Mol. Pharmacol. 22: 5–7; 1982.

    PubMed  CAS  Google Scholar 

  12. Engel, G.; Hoyer, D.; Berthold, R., et al. (±)-(125I)cyanopindolol, a new ligand for β-adrenoceptors: Identification and quantitation of subclasses of β-adrenoceptors in guinea pig. Naunyn-Schmiedeberg Arch. Pharmacol. 317: 277–285; 1981.

    Article  CAS  Google Scholar 

  13. Ezrailson, E. G.; Garber, A. J.; Munson, P. J.; et al. (125I)-Iodopindolol: a new β-adrenergic receptor probe. J. Cyclic Nucleotide Res. 7: 13–26; 1981.

    PubMed  CAS  Google Scholar 

  14. Harden, T. K.; Wolfe, B. B.; Molinoff, P. B. Binding of iodinated beta adrenergic antagonists to proteins derived from rat heart. Mol. Pharmacol. 12: 1–15; 1976.

    PubMed  CAS  Google Scholar 

  15. Harper, J. F.; Brooker, G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'O acetylation by acetic anhydride in aqueous solution. J. Cyclic Nucleotide Res. 1: 207–218; 1975.

    PubMed  CAS  Google Scholar 

  16. Karliner, J. S.; Simpson, P. C.; Taylor, J. E., et al. Adrenergic receptor characteristics of cardiac myocytes cultured in serum-free medium: Comparison with serum supplemented medium. Biochem. Biophys. Res. Comm. 128: 376–382; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Kasten, F. H. Mammalian myocardial cells. In: Krause P. F.; Patterson, M. K., Jr., eds. Tissue culture methods and applications. New York: Academic Press, 1973: 72–81.

    Google Scholar 

  18. Kleinman, H. K.; McGarvey, M. L.; Liotta, L. A., et al. Isolation and characterization of type IV procollagen, laminin and heparin sulfate proteoglycan from the EHS sarcoma. Biochemistry 21: 6188–6193; 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Lowry, O. H.; rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  20. Lundgren, E.; Borg, T. K.; M»rdh, S. Isolation, characterization and adhesion of calcium-tolerant myocytes from the adult rat heart. J. Mol. Cell. Cardiol. 16: 355–362; 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Lundgren, E.; Terracio, L.; M»rdh, S., et al. Extracellular matrix components influence the survival of adult cardiac myocytes in vitro. Exp. Cell Res. 158: 371–381; 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Marsh, J. D.; Lachance, D.; Kim, D. Mechanisms of β-adrenergic receptor regulation in cultured chick heart cells. Role of cytoskeleton function and protein synthesis. Circ. Res. 57: 171–181; 1985.

    PubMed  CAS  Google Scholar 

  23. Meier, C. F., Jr.; Briggs, G. M.; Claycomb, W. C. Electrophysiological properties of cultured adult rat ventricular cardiac muscle cells. Am. J. Physiol. 250: H731-H735; 1986.

    PubMed  CAS  Google Scholar 

  24. Moses, R. L.; Claycomb W. C. Ultrastructure of terminally differentiated adult rat cardiac muscle cells in culture. Am. J. Anat. 164: 113–131; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Nag, A. C.; Cheng, M.; Fischman, A., et al. Long-term cell culture of adult mammalian cardiac myocytes: Electron microscopic and immunofluorescent analyses of myofibrillar structure. J. Mol. Cell. Cardiol. 15: 301–317; 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Paietta, E.; Hoyer, D.; Engeland, G., et al. Non-specific uptake of the radioligand125I-IHYP by intact human lymphocytes; reversal of the uptake process. Mol. Cell Endocrinol. 25: 267–276; 1982.

    Article  PubMed  CAS  Google Scholar 

  27. Piper, H. M.; Probst, I.; Schwartz, P., et al. Culturing of calcium stable adult cardiac myocytes. J. Mol. Cell. Cardiol. 14: 397–412; 1982.

    Article  PubMed  CAS  Google Scholar 

  28. Pittman, R. N.; Molinoff, P. B. Interactions of agonists and antagonists with β-adrenergic receptors on intact L 6 muscle cells. J. Cyclic Nucleotide Res. 6: 421–435; 1980.

    PubMed  CAS  Google Scholar 

  29. Porzig, H.; Becker, C.; Reuter, H. Competitive and non-competitive interactions between specific ligands and beta-adrenoceptors in living cardiac cells. Naunyn-Schmiedeberg Arch. Pharmacol. 321: 89–99; 1982.

    Article  CAS  Google Scholar 

  30. Rubin, K.; Oldberg, A.; Höök, M., et al. Adhesion of rat hepatocytes to collagen. Exp. Cell. Res. 117: 165–177; 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Scatchard, G. The attractions of proteins for small molecules and ions. Ann. NY Acad. Sci. 51: 660–672; 1949.

    Article  CAS  Google Scholar 

  32. Schonberg, M.; Morris, S. A. Krichevsky, A., et al The use of (125I)iodocyanopindolol as a specific probe for beta-adrenergic receptors in differentiating cultured rat skeletal muscle. Cell Differ. 12: 321–327; 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Steiner, A. L.; wehmann, R. E.; Parker, C. W., et al. Radioimmunoassay for the measurement of cyclic nucleotides. Adv. Cyclic Nucleotide Res. 2: 51–61; 1972.

    PubMed  CAS  Google Scholar 

  34. Terracio, L.; Robertsson, K.; Dewey, A. R., et al. Cytoskeletal alterations associated with the progression of neonatal cardiac myocytes into culture. Proc. EMSA 43: 548–549; 1985.

    Google Scholar 

  35. Watanabe, A. M.; Jones, L. R.; Manalan, A. S., et al. Cardiac autonomic receptors—recent concepts from radiolabeled ligand—binding studies. Circ. Res. 50: 161–172; 1982.

    PubMed  CAS  Google Scholar 

  36. Williams, L. T.; Lefkowitz, R. J. Identification and study of beta-adrenergic receptors using radioactively labeled beta-adrenergic antagonists. In: Receptor binding studies in adrenergic pharmacology. New York: Raven Press, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by grants HL 24935 and HL 33656 from the National Institutes of Health, Bethesda, MD, and Swedish Medical Research Council grant 07466.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundgren, E., Terracio, L., Allen, D.O. et al. Modulation of β-receptors as adult and neonatal cardiac myocytes progress into culture. In Vitro Cell Dev Biol 24, 28–34 (1988). https://doi.org/10.1007/BF02623812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623812

Key words

Navigation