Skip to main content
Log in

Rat pancreatic interlobular duct epithelium: Isolation and culture in collagen gel

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Interlobular duct fragments from the pancreas of the rat were isolated by collagenase digestion and filtration, embedded in a matrix of rat-tail collagen, and cultured in a 1∶1 mixture of Dulbecco’s minimal essential and Ham’s F12 media supplemented with cholera toxin (CT, 100 ng/ml) and epidermal growth factor (EGF, 10 ng/ml) in addition to supplements used previously, thereby improving the yield of ducts by a factor of two compared with previous resuts. The ducts were harvested by digestion of the collagen matrix with collagenase and were then dissociated by treatment with EDTA in divalent cation-free salt solution, followed by digestion with collagenase and hyaluronidase. The resulting tissue fragments were suspended in collagen and cultured as were the ducts. Numerous cysts appeared as a function of time and some of these enlarged dramatically. Some of the larger cysts exhibited secondary tubular processes extending into the surrounding collagen. The addition of bovine pituitary extract (BPE, 50 μg/ml) doubled the number of cysts, whereas omission of serum or CT+EGF reduced the number. BPE or forskolin could substitute effectively for CT. Agents that stimulate (secretin) or inhibit (e.g., ouabain or acetazolamide) fluid-electrolyte secretion in vivo had no effect on the number or average diameter of the cysts. The cysts were 83 to 88% epithelial with the balance of the cells being fibroblastic in appearance. Some cysts consisted only of epithelium. The proliferative capacity of the cystic epithelium was shown, by the presence of mitotic figures and by an autoradiographic labeling index of 22 to 30% after a 24-h exposure to [3H]thymidine. The labeling index was reduced by the omission of CT+EGF. Transmission electron microscopy showed that the cysts exhibited morphologic features of duct epithelium in vivo, including apical microvilli, lateral, interdigitations of the plasma membrane, and typical cytoplasmic organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Githens, S. The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation and culture. J. Pediatr. Gastroenterol. Nutr. 7:486–506; 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Case, R. M.; Argent, B. E. Bicarbonate secretion by pancreatic duct cells: mechanism, and control. In: Go, V. L. W.; Gardner J. D.; Brooks, F. P., et al. eds. The exocrine pancreas: biology, pathobiology, and diseases. New York: Raven Press; 1986:213–244.

    Google Scholar 

  3. Kuijpers, G. A. J.; dePont, J. J. H. Role of proton and bicarbonate transport in pancreatic cell function. Annu. Rev. Physiol 49:87–103; 1987.

    Article  PubMed  CAS  Google Scholar 

  4. Schulz, I. Electrolyte and fluid secretion in the exocrine pancreas. In: Johnson, L. R., ed. Physiology of the gastrointestinal tract, 2nd ed. New York: Raven Press; 1987:1147–1171.

    Google Scholar 

  5. Forstner, G.; Forstner, J. Mucus: biosynthesis and secretion. In: Go, V. L. W.; Gardner, J. D.; Brooks, F. P., et al., eds. The exocrine pancreas: biology, pathobiology, and diseases. New York: Raven Press; 1986:283–286.

    Google Scholar 

  6. Githens, S.; Holmquist, D. R. G.; Whelan, J. F., et al. Ducts of the rat pancreas in agarose matrix culture. In Vitro 16:797–808; 1980.

    Article  PubMed  Google Scholar 

  7. Githens, S.; Finley, J. J.; Patke, C. L., et al. Biochemical and histochemical characterization of cultured rat and hamster pancreatic ducts. Pancreas 2:427–438; 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Arkle, S.; Lee, C. M.; Cullen, M. J., et al. Isolation of ducts from the pancreas of copper-deficient rats. Q. J. Exp. Physiol. 71:249–265; 1986.

    PubMed  CAS  Google Scholar 

  9. Stoner, G. D.; Harris, C. C.; Bostwick, D. G., et al. Isolation and characterization of epithelial cells from bovine pancreatic duct. In Vitro 14:581–590; 1987.

    Article  Google Scholar 

  10. Jones, R. T.; Trump, B. F.; Stoner, G. D. Culture of human pancreatic ducts. Methods Cell Biol. 21B:429–439; 1980.

    PubMed  CAS  Google Scholar 

  11. Sato, T.; Sato, M.; Hudson, E. A., et al. Characterization of bovine pancreatic ductal cells isolated by a perfusion-digestion technique. In Vitro 19:651–660; 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Hootman, S. R.; Logsdon, C. D. Isolation and monolayer culture of guinea pig pancreatic duct epithelial cells. In Vitro 24:566–574; 1988.

    CAS  Google Scholar 

  13. Tsao, M.-S.; Duguid, W. P. Establishment of propagable epithelial cell lines irom normal adult rat pancreas. Exp. Cell. Res. 168:365–375; 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Githens, S.; Whelan, J. F. Isolation culture of hamster pancreatic ducts. J. Tissue Cult Methods 8:97–102; 1983.

    Article  Google Scholar 

  15. Githens, S.; Patke, C. L.; Schexnayder, J. A. Culture of rat pancreatic interlobular duct epithelium in collagen gel. J. Cell Biol. 103:360a; 1986.

    Google Scholar 

  16. Richards, J.; Larson, L.; Yang, J., et al. Method for culturing mammary epithelial cells in a rat tail collagen gel matrix. J. Tissue Cult. Methods. 8:31–36; 1983.

    Article  Google Scholar 

  17. Amsterdam, A.; Jamieson, J. D. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J. Cell Biol. 63:1037–1056; 1974.

    Article  PubMed  CAS  Google Scholar 

  18. Oliver, C. Isolation and maintenance of differentiated exocrine gland acinar cells in vitro. In Vitro 16:297–305; 1980.

    PubMed  CAS  Google Scholar 

  19. Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27:137A-138A; 1965.

    Google Scholar 

  20. Iacino, D.; Scheele, G. A.; Liebow, C. Secretory response of the rabbit pancreas to cholecystokinin stimulation. Am. J. Physiol. 239:G247-G254; 1980.

    PubMed  CAS  Google Scholar 

  21. Smith, P. A.; Case, R. M. Effects of cholera toxin on cyclic adenosine 3′,5′-monophosphate concentration and secretory processes in the exocrine pancreas. Biochim. Biophys. Acta 399:277–290; 1975.

    PubMed  CAS  Google Scholar 

  22. Harris, A.; Coleman, L. Establishment of a tissue culture system for epithelial cells derived from human pancreas: a model for the study of cystic fibrosis. J. Cell Sci. 87:695–703; 1987.

    PubMed  Google Scholar 

  23. Chen, J.; Stuckey, E. C.; Berry, C. L. Three-dimensional culture of rat exocrine pancreatic cells using collagen gels. Br. J. Exp. Pathol. 66:551–559; 1985.

    PubMed  CAS  Google Scholar 

  24. Mueller, H. B. Der Einfluss kupferarmer Kost auf das Pankreas. Lichtmikroskopische Untersuchungen am exokrinen Teil der Bauchspeicheldrusen weisser Ratten. Virchows Arch. [A] 350:353–367; 1970.

    CAS  Google Scholar 

  25. Argent, B. E.; Arkle, S.; Cullen, M. J., et al. Morphological, biochemical, and secretory studies on rat pancreatic ducts maintained in tissue culture. Q. J. Exp. Physiol. 71:633–648; 1986.

    PubMed  CAS  Google Scholar 

  26. Resau, J. H.; Hudson, E. A.; Jones, R. T. Organ explant culture of adult Syrian golden hamster pancreas. In Vitro 19:315–325; 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Kern, H. F.; Ferner, H. Die Feinstruktur der exokrinen Pancreasgewebes vom Menschen. Z. Zellforsch. Mikrosk. Anat. 113:322–343; 1971.

    Article  PubMed  CAS  Google Scholar 

  28. Riches, D. J. Ultrastructural observations on the common bile duct epithelium of the rat. J. Anat. 111:157–170; 1972.

    PubMed  CAS  Google Scholar 

  29. Cohen, P. J. The renewal areas of the common bile epithelium in the rat. Anat. Rec. 150:237–242; 1964.

    Article  PubMed  CAS  Google Scholar 

  30. Kirk, D.; Alverez, R. B. Morphologically stable epithelial vesicles cultured from normal human endometrium in defined medium. In Vitro 22:604–614; 1986.

    CAS  Google Scholar 

  31. Yang, J.; Nandi, S. Growth of cultured cells using collagen as substrate. Int. Rev. Cytol. 81:249–286; 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Iguchi, T.; Uchima, F.-D. A.; Bern, H. A. Growth of mouse vaginal epithelial cells in culture: effect of sera and supplemented serum-free media. In Vitro 23:535–540; 1987.

    CAS  Google Scholar 

  33. Sanderson, R. D.; Fitch, J. M.; Linsenmayer, T. R., et al. Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro. J. Cell Biol. 102:740–747; 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Peehl, D. M.; Stamey, T. A. Serum-free growth of adult human prostatic epithelial cells. In Vitro 22:82–90; 1986.

    CAS  Google Scholar 

  35. Ethier, S. P. Primary culture and serial, passage of normal and carcinogen-treated rat mammary epithelial cells in vitro. JNCI 71:1307–1318; 1985.

    Google Scholar 

  36. Carpenter, G.; Cohen, S. Epidermal growth factor. Ann. Rev. Biochem. 48:193–216; 1979.

    Article  PubMed  CAS  Google Scholar 

  37. Seamon, K. B.; Padgett, W.; Daly, J. W. Forskolin: unique diterpene activation of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA 78:3363–3367; 1981.

    Article  PubMed  CAS  Google Scholar 

  38. Kempen, H. J. M.; dePont, J. J. H.; Bonting, S. L. Rat pancreas adenylate cyclase. III. Its role in pancreatic secretion assessed by means of cholera toxin. Biochim. Biophys. Acta. 392:276–287; 1975.

    PubMed  CAS  Google Scholar 

  39. Hoffman, E. K. Anion transport systems in the plasma membrane of vertebrate cells. Biochim. Biophys. Acta. 864:1–31; 1986.

    Google Scholar 

  40. Schulz, I. Bicarbonate transport in the exocrine pancreas. Ann. NY Acad. Sci. 341:191–209; 1980.

    Article  PubMed  CAS  Google Scholar 

  41. Tomooka, Y.; Harris, S. E. McLachlan, J. A. Growth of seminal vesicle epithelial cells in serum-free collagen gel culture. In Vitro 21:237–244; 1985.

    CAS  Google Scholar 

  42. Montesano, R.; Mouson, P.; Amherdt, M., et al. Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids. J. Cell Biol. 97:935–939; 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Logsdon, C. D.; Williams, J. A. Pancreatic acinar cells in monolayer culture: direct trophic effects of caerulein in vitro. Am. J. Physiol. 250:G440-G447; 1986.

    PubMed  CAS  Google Scholar 

  44. Oliver, C.; Waters, J. F.; Tolbert, C. L., et al. Growth of exocrine acinar cells on a reconstituted basement membrane gel. In Vitro 23:465–473; 1987.

    CAS  Google Scholar 

  45. Bendayan, M.; Duhr, M. A.; Gingras, D. Studies on pancreatic acinar cells on tissue culture: basal lamina (basement membrane) matrix promotes three-dimensional reorganization. Eur. J. Cell Biol. 42:60–67; 1986.

    PubMed  CAS  Google Scholar 

  46. Thivolet, C. H.; Chatelain, P.; Nicoloso, H., et al. Morphological and functional effects of extracellular matrix on pancreatic islet cell cultures. Exp. Cell Res. 159:313–322; 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Githens, S., Schexnayder, J.A., Desai, K. et al. Rat pancreatic interlobular duct epithelium: Isolation and culture in collagen gel. In Vitro Cell Dev Biol 25, 679–688 (1989). https://doi.org/10.1007/BF02623720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623720

Key words

Navigation