Skip to main content
Log in

Calcium regulation of skeletal myogenesis. I. Cell content critical to myotube formation

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Primary cultures of embryonic chick pectoral skeletal muscle were used to study calcium regulation of myoblast fusion to form multinucleated myotubes. Using atomic absorption spectrometry to measure total cellular calcium and the45Ca-exchange method to determine free cellular Ca++, our data suggest that only the free cellular calcium changes significantly during development under conditions permissive for myotube formation (0.9 mM external Ca++). Increases in calcium uptake occurred before and toward the end of the period of fusion with the amount approximating 2 to 4 pmol per cell in mass cultures. If the medium [Ca++] is decreased to 0.04 mM, as determined with a calcium electrode, a fusion-block is produced and free cell Ca++ decreased 5- to 10-fold. Removal of the fusion-block by increasing medium [Ca++] results in a release of the fusion-block and an increase in cellular Ca++ to approximately 1 pmol per cell during fusion, and higher thereafter. Cation ionophore A23187 produced transient increases in cellular calcium and stimulated myoblast fusion and the final extent of myotube formation only when added at the onset of culture. Results suggest that transient increased calcium uptake alone is insufficient for fusion because critical cellular content in conjunction with permissive amounts of medium [Ca++] must exist. The latter suggests further that cell surface Ca++ was also critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barrett, J. N.; Magleby, K. L.; Palotta, B. S. Properties of single-channel activated potassium channels in cultured rat muscle. J. Physiol. 331:211–230; 1982.

    PubMed  CAS  Google Scholar 

  2. Cox, P. G.; Gunter, M. The effect of calcium ion concentration on myotube formation in vitro. Exp. Cell Res. 79:169–178; 1973.

    Article  PubMed  CAS  Google Scholar 

  3. David, J. D.; Higginbotham, C.-A. Fusion of chick embryo skeletal myoblasts: interactions of prostaglandin E1, adenosine 3′∶5″ monophosphate, and calcium influx. Dev. Biol. 82:308–316; 1981.

    Article  PubMed  CAS  Google Scholar 

  4. David, J. D.; See, W. M.; Higginbotham, C.-A. Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev. Biol. 82:297–307; 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Den, H.; Malinzak, D. A.; Keating, H. J., et al. Influence of concanavalin-A, wheat germ agglutinin and soybean agglutinin on the fusion of myoblasts in vitro. J. Cell Biol. 67:826–834; 1975.

    Article  PubMed  CAS  Google Scholar 

  6. Engel, L. C.; David, J. D. A temperature-sensitive non-fusing myoblast variant and a spontaneous revertant: isolation and characterization. Somatic Cell Mol. Genet. 11:325–338; 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Fischman, D. A. The fine structure of muscle differentiation in monolayer culture. In: Banker, B.; Przybylski, R.; Victor, M., et al. Research in muscle development and the muscle spindle. Excerpta Med. Int. Congr. Ser. 240:88–104; 1970.

    Google Scholar 

  8. Fukuda, J.; Fischbach, G. G.; Smith, T. G. A voltage clamp study of the sodium, calcium and chloride spikes of chick skeletal muscle cells grown in tissue culture. Dev. Biol. 49:412–424; 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Garrels, J. I. Changes in protein synthesis in a clonal cell line. Dev. Biol. 73:134–152; 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Harvey, A. L. The pharmacology of nerve and muscle in tissue culture. New York: Alan R. Liss, Inc., 1984:90–124.

    Google Scholar 

  11. Kalderon, N.; Gilula, N. B. Events involved in myoblast fusion. J. Cell Biol. 81:411–425; 1979.

    Article  PubMed  CAS  Google Scholar 

  12. Konigsberg, I. R. Clonal and biochemical studies of myogenesis. Carnegie Inst. Wash Yearbook. 63:516–525; 1964.

    Google Scholar 

  13. Lough, J. W.; Entman, M. L.; Bossen, E. H. Calcium accumulation by isolated sarcoplasmic reticulum of skeletal muscle during development in tissue culture. J. Cell Physiol. 80:431–436; 1979.

    Article  Google Scholar 

  14. MacBride, R. G.; Przybylski, R. J. Purified lectin from skeletal muscle inhibits myotube formation in vitro. J. Cell Biol. 85:617–625; 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Martonosi, A.; Roufa, D.; Boland, R., et al. Development of sarcoplasmic reticulum in cultured chicken muscle. J. Biol. Chem. 252:318–332; 1977.

    PubMed  CAS  Google Scholar 

  16. Merlie, J. P.; Buckingham, M. E.; Whalen, R. G., Molecular aspects of myogenesis. In: Moscona, A. A.; Monroy, A., eds. Curr. Top. Dev. Biol. 11:61–114; 1977.

  17. Morris, G. E.; Cole, R. J. Calcium and the control of muscle specific creatine kinase accumulation during skeletal muscle differentiation in vitro. Dev. Biol. 69:146–158; 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Nelson, W. J.; Lazarides, E. Switching of the subunit composition of muscle spectrin during myogenesis in vitro. Nature 304:364–368; 1984.

    Article  Google Scholar 

  19. Noonan, D. M.; Culp, L. C.; Przybylski, R. J. Calcium regulation of skeletal myogenesis. III. The glycosaminoglycan content in the cell surface specialized for substratum attachment. Submitted.

  20. Ozawa, E. The role of calcium ion in avian myogenesis in vitro. Biol. Bull. 143:431–439; 1972.

    Article  PubMed  CAS  Google Scholar 

  21. Przybylski, R. J.; Bullaro, J. C.; MacBride, R. G. Reversible suppression of skeletal myotube formation in vitro obtained by varying [CO2]. Am. J. Physiol. 237:C166-C176; 1979.

    PubMed  CAS  Google Scholar 

  22. Przybylski, R. J.; Kirby, A. C.; MacBride, R. G. Calcium content and uptake during chick skeletal muscle development in culture. J. Cell Biol. 95:373a; 1982.

    Google Scholar 

  23. Przybylski, R. J.; Szigeji, V.; Davidheiser, S., et al. Calcium regulation of myogenesis. II. Extracellular and cell surface effects. Cell Calcium. In revision.

  24. Reporter, M. C.; Ebert, J. D. A mitochondrial factor that prevents the effects of antimycin A on myogenesis. Dev. Biol. 12:154–185; 1965.

    Article  PubMed  CAS  Google Scholar 

  25. Sandra, A.; Leon, M. A.; Przybylski, R. J. Myoblast fusion: possible involvement of membrane fluidity. J. Cell Sci. 28:251–272; 1979.

    Google Scholar 

  26. Sandra, A.; Leon, M. A.; Przybylski, R. J. Reversal by insulin of concanavalin-A inhibition of myotube formation and evidence for common binding sites. Endocrinology 105:391–401; 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Schudt, C.; Pette, D. Ca++ ion as a coupling agent in enzymatic differentiation and carbohydrate metabolism of cultured muscle cells. Adv. Enzym. Regul. 16:21–39; 1978.

    Article  Google Scholar 

  28. Shainberg, A.; Yagil, G.; Yaffe, D. Control of myogenesis in vitro by Ca++ concentrations in nutritional medium. Exp. Cell Res. 58:163–167; 1971.

    Article  Google Scholar 

  29. Turner, D. C.; Gmur, R.; Siegrist, M. Differentiation in muscle cultures derived from embryonic chicken muscle. I. Muscle specific enzyme changes before fusion in EGTA-synchronized cultures. Dev. Biol. 48:258–283; 1976.

    Article  PubMed  CAS  Google Scholar 

  30. van Breeman, C.; De Weer, P. Lanthanum inhibition of45Ca efflux from the squid giant axon. Nature 226:57–71; 1970.

    Google Scholar 

  31. Vertel, B. M.; Fischman, D. A. Mitochondrial development during myogenesis. Dev. Biol. 58:356–371; 1977.

    Article  PubMed  CAS  Google Scholar 

  32. Yaffe, D. Developmental changes preceding cell fusion during muscle differentiation in vitro. Exp. Cell Res. 66:33–48; 1971.

    Article  PubMed  CAS  Google Scholar 

  33. Wakelam, M. J. O. The fusion of myoblasts. Biochem. J. 228:1–12; 1985.

    PubMed  CAS  Google Scholar 

  34. Wick, R.; Przybylski, R. Characterization of125I-labeled cell surface proteins during in vitro myogenesis. J. Cell Biol. 83:391a; 1979.

    Google Scholar 

  35. Zalin, R. J. Prostaglandins and myoblast fusion. Dev. Biol. 59:241–248; 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Przybylski, R.J., MacBride, R.G. & Kirby, A.C. Calcium regulation of skeletal myogenesis. I. Cell content critical to myotube formation. In Vitro Cell Dev Biol 25, 830–838 (1989). https://doi.org/10.1007/BF02623667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623667

Key words

Navigation