Skip to main content
Log in

Improved media for normal human muscle satellite cells: Serum-free clonal growth and enhanced growth with low serum

  • Rapid Communications in Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Editor's statement This article describes the optimization of both the basal nutrient medium and growth factor requirements for human muscle cells in vitro. This system is critical for studies of normal muscle cell and molecular biology, as well as for understanding diseases of muscle such as Duchenne, Muscular Dystrophy.

Summary

We have developed a serum-free medium for clonal growth of normal human muscle satellite cells (HMSC). It consists of an optimized nutrient medium MCDB 120, plus a serum-free supplement, designated SF, that contains epidermal growth factor (EGF), insulin, dexamethasone, bovine serum albumin, and fetuin. Fibroblast growth factor was needed with dialyzed fetal bovine serum (dFBS) as the only other supplement, but in media containing SF, it was only slightly beneficial, and was omitted from the final medium without significant loss. Clonal growth of HMSC in MCDB 120 plus SF is as good as with 15% serum and 0.5% chicken embryo or bovine pituitary extract. However, growth is further improved by use of a doubly-supplemented (DS) medium containing both SF and 5% dFBS. Clonal growth of HMSC in the DS medium far exceeds that in previous media with any amount of serum, and monolayer growth is at least equal to that in conventional media with higher levels of serum. Cells grown in these media exhibit little differentiation, even when grown to high densities. However, they retain the capacity for extensive fusion and synthesis of increased creatine kinase when transferred to a serum-free differentiation-promoting medium, such as Dulbecco's modified Eagle's medium plus insulin. All experiments were done with clonal cultures of HMSC to insure that observed growth responses were always those of muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

References

  1. Allen, R. E.; Dodson, M. V.; Luiten, L. S.; Boxhorn, L. K. A serum-free medium that supports the growth of cultured skeletal muscle satellite cells. In Vitro Cell. Dev. Biol. 21:636–640; 1985.

    PubMed  CAS  Google Scholar 

  2. Askanas, V.; Engel, W. K. A new program for investigating adult human skeletal muscle grown aneurally in tissue culture. Neurology 25:58–67; 1975.

    PubMed  CAS  Google Scholar 

  3. Askanas, V.; Gallez-Hawkins, G. Synergistic influence of polypeptide growth factors on cultured human muscle. Arch. Neurol. 42:749–752; 1985.

    PubMed  CAS  Google Scholar 

  4. Askanas, V.; Cave, S.; Engel, W. K. Serum-free, hormonallychemically defined medium for primary culture of human muscle. Soc. Neurosci. Abstr. 11:936; 1985.

    Google Scholar 

  5. Askanas, V.; Cave, S.; Gallez-Hawkins, G.; Engel, W. K. Fibroblast growth factor, epidermal growth factor and insulin exert a neuronal-like influence on acetylcholine receptors in aneurally cultured human muscle. Neurosci Lett. 61:213–219; 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Barnes, D.; Sato, G. Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102:225–270; 1980.

    Article  Google Scholar 

  7. Blau, H. M.; Webster, C. Isolation and characterization of human muscle cells. Proc. Natl. Acad. Sci. USA 78:5623–5627; 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Blau, H. M.; Webster, C.; Pavlath, G. K. Defective myoblasts identified in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 80:4856–4860; 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Boyce, S. T.; Ham, R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically-defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81(1), Suppl.: 33s-40s; 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Crabb, J. W.; Armes, L. G.; Carr, S. A., et al. Complete primary structure of prostatropin, a prostate epithelial cell growth factor. Biochemistry 25:4988–4993; 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Delaporte, C.; Dautreaux, B.; Fardeau, M. Human myotube differentiation in vitro in different culture conditions. Biol Cell. 57:17–22; 1986.

    PubMed  CAS  Google Scholar 

  12. Dodson, M. V.; Allen, R. E. Interaction of multiplication stimulating activity/rat insulin-like growth factor II with skeletal muscle satellite cells during aging. Mech. Ageing Dev. 39:121–128; 1987.

    Article  PubMed  CAS  Google Scholar 

  13. Dodson, M. V.; Allen, R. E.; Hossner, K. L. Ovine somatomedin, multiplication-stimulating activity, and insulin promote skeletal muscle satellite cell proliferation in vitro. Endocrinology 117:2357–2363; 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Dollenmeier, P.; Turner, D. C.; Eppenberger H. M. Proliferation and differentiation of chick skeletal muscle cells cultured in a chemically defined medium. Exp. Cell Res. 135:47–61; 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Ewton, D. Z.; Falen, S. L.; Florini, J. R. The type II insulin-like growth factor (IGF) receptor has low affinity for IGF-I analogs: Pleiotypic actions of IGFs on myoblasts are apparently mediated by the type I receptor. Endocrinology 120:115–123; 1987.

    PubMed  CAS  Google Scholar 

  16. Florini, J. R.; Roberts, S. B. A serum-free medium for the growth of muscle cells in culture. In Vitro 15:983–992; 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Florini, J. R.; Ewton, D. Z.; Evinger-Hodges, M. J., et al. Stimulation and inhibition of myoblast differentiation by hormones. In Vitro 20:942–958; 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Gospodarowicz, D.; Cheng, J. Growth of myoblasts in lipoprotein-supplemented, serum-free medium: regulation of proliferation by acidic and basic fibroblast growth factor. In Vitro Cell. Dev. Biol. 23:507–514; 1987.

    PubMed  CAS  Google Scholar 

  19. Gospodarowicz, D.; Weseman, J.; Moran, J. S.; Lindstrom, J. Effects of fibroblast growth factor on the division and fusion of bovine myoblasts. J. Cell Biol. 70:395–405; 1976.

    Article  PubMed  CAS  Google Scholar 

  20. Ham, R. G. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp. Cell Res. 29:515–526; 1963.

    Article  PubMed  CAS  Google Scholar 

  21. Ham, R. G. Putrescine and related amines as growth factors for a mammalian cell line. Bioch. Biophys. Res. Commun. 14:34–38; 1964.

    Article  CAS  Google Scholar 

  22. Ham, R. G. Survival and growth requirements of nontransformed cells. Hbk. Exp. Pharmacol. 57:13–88; 1981.

    Google Scholar 

  23. Ham, R. G. Selective media. In: Pretlow, T. G.; Pretlow, T. P., Cell separation: Methods and selected applications, Vol. 3. Orlando, FL: Academic Press; 1984:209–236.

    Google Scholar 

  24. Ham, R. G.; Hammond, S. L.; Stampfer, M. R.; Bartely, J. C. Normal human mammary epithelial cells in serum-free media. In: Enami, J.; Ham, R. G. Growth and differentiation of mammary epithelial cells in culture. Tokyo: Japan Scientific Societies Press; 1987:59–108.

    Google Scholar 

  25. Hammond, S. L.; Ham, R. G.; Stampfer, M. R. Serum-free growth of human mammary epithelial cells: Rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435–5439; 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Hauschka, S. D. Clonal analysis of vertebrate myogenesis. II. Environmental influences on human muscle differentiation. Dev. Biol. 37:329–344; 1974.

    Article  PubMed  CAS  Google Scholar 

  27. Hauschka, S. D.; Konigsberg, I. R. The influence of collagen on the development of muscle clones. Proc. Natl. Acad. Sci. USA 55:119–126; 1966.

    Article  PubMed  CAS  Google Scholar 

  28. Hayashi, I.; Kobylecki, J. Growth of myoblasts in hormonesupplemented, serum-free medium. Cold Spring Harbor Conf. Cell Prolif. 9:857–865; 1982.

    CAS  Google Scholar 

  29. Knedler, A.; Ham, R. G. Optimized medium for clonal, growth of human microvascular endothelial cells with minimal serum. In Vitro Cell. Dev. Biol. 23:481–491; 1987.

    PubMed  CAS  Google Scholar 

  30. Konigsberg, I. R. Clonal analysis of myogenesis. Science 140:1273–1284; 1963.

    Article  PubMed  CAS  Google Scholar 

  31. Kumegawa, M.; Ikeda, E.; Hosada, S.; Takuma, T. In vitro effects of thyroxine and insulin on myoblasts from chick embryo skeletal muscle. Dev. Biol. 79:493–499; 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Lim, R. W.; Hauschka, S. D. Differential EGF responsiveness and EGF receptor modulation in a clonal line of mouse myoblasts and a differentiation-defective variant. Cold Spring Harbor Conf. Cell Prolif. 9:877–884; 1982.

    CAS  Google Scholar 

  33. Lim, R. W.; Hauschka, S. D. A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro. J. Cell Biol. 98:739–747; 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Lim, R. W.; Hauschka, S. D. EGF responsiveness and receptor regulation in normal and differentiation-defective mouse myoblasts. Dev. Biol. 105:48–58; 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Linkhart, T. A.; Clegg, C. H.; Hauschka, S. D. Myogenic differentiation in permanent clonal myoblast cell lines: Regulation by macromolecular growth factors in the culture medium. Dev. Biol. 86:19–30; 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Linkhart, T. A.; Lim, R. W.; Hauschka, S. D. Regulation of normal and variant mouse myoblast proliferation and differentiation by specific growth factors. Cold Spring Harbor Conf. Cell Prolif. 9:867–876; 1982.

    CAS  Google Scholar 

  37. Miranda, A. F.; Somer, H.; DeMauro, S. Isozymes as markers of differentiation. In: Mauro, S.; Bischoff, R.; Carlson, B. M.; Shafiq, S. A.; Konigsberg, I., Muscle regeneration. New York: Raven Press; 1979:453–473.

    Google Scholar 

  38. Neufeld, G.; Gospodarowicz, D. Basic acidic fibroblast growth factors interact with the same cell surface receptors. J. Biol. Chem. 261:5631–5637; 1986.

    PubMed  CAS  Google Scholar 

  39. Pedersen, K. O. Ultracentrifugal and electrophoretic studies on fetuin. J. Phys. Colloid Chem. 51:164–171; 1947.

    Article  CAS  Google Scholar 

  40. Pinset, C.; Whalen, R. G. Induction of myogenic differentiation in serum-free medium does not require DNA synthesis. Dev. Biol. 108:284–289; 1985.

    Article  PubMed  CAS  Google Scholar 

  41. Shipley, G. D.; Ham, R. G. Improved medium and culture conditions for clonal growth with minimal serum protein and for enhanced serum-free survival of Swiss 3T3 cells. In Vitro 17:656–670; 1981.

    PubMed  CAS  Google Scholar 

  42. Spiro, R. G. Studies on fetuin, a glycoprotein of fetal serum. I. Isolation, chemical composition, and physicochemical properties. J. Biol. Chem. 235:2860–2869; 1960.

    PubMed  CAS  Google Scholar 

  43. Tsao, M. C.; Walthall, B. J.; Ham, R. G. Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell. Physiol. 110:219–229; 1982.

    Article  PubMed  CAS  Google Scholar 

  44. Vogel, Z.; Sytkowski, A. J.; Nirenberg, M. W. Acetylcholine receptors of muscle grown in vitro. Proc. Natl. Acad. Sci. USA 69:3180–3184; 1972.

    Article  PubMed  CAS  Google Scholar 

  45. Yasin, R.; van Beers, G. Growth and Differentiation of Human Muscle Cells in Defined Medium. In: Fischer, G.; Weiser, R. J. Hormonally defined media: a tool in cell biology. Berlin: Springer Verlag; 1983:406–410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a grant from the Muscular, Dystrophy Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ham, R.G., Clair, J.A.S., Webster, C. et al. Improved media for normal human muscle satellite cells: Serum-free clonal growth and enhanced growth with low serum. In Vitro Cell Dev Biol 24, 833–844 (1988). https://doi.org/10.1007/BF02623656

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623656

Key words

Navigation