Skip to main content
Log in

Transferrin is a major mouse milk protein and is synthesized by mammary epithelial cells

  • Rapid Communcations in Cell Biology
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Editor’s Statement This study combines cultured cells and direct analytical approaches to show that authentic transferrin is a major mouse milk protein and is regulated differently than beta-casein in mammary epithelium. Wallace L. McKeehan

Summary

We have identified a major mouse milk protein as transferrin (Tf) using immunoprecipitation, 2-dimensional electrophoresis, Ouchterlony diffusion and V-8 protease digests. We show that Tf is synthesized by mammary epithelial cells themselves and that its synthesis and secretion is regulated distinctly from that of other milk proteins. In culture, the kinetics of Tf synthesis and secretion are distinct from that of β-casein; furthermore, Tf is relatively insensitive to lactogenic hormones whereas β-casein is hormone-dependent.In vivo, however, Tf is regulated by pregnancy. While the virgin gland produces small amounts of Tf, its production is greatly increased during pregnancy and lactation. Thus, Tf synthesis in the mammary gland is modulated by as yet unknown factorsin vivo. These observations are discussed in terms of Tf’s possible role in mammary gland growth, differentiation and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aisen, P.; Listowski, I. Iron transport and storage proteins. Ann. Biochem. 49:357–393; 1980.

    Article  CAS  Google Scholar 

  2. Avner, E. D.; Sweeney, W. E.; Piesco, N. P.; Ellis, D. Growth factor requirements of organogenesis in serum-free metanephric organ culture. In Vitro 21:297–304; 1985.

    CAS  Google Scholar 

  3. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Beach, R. L.; Popiela, H.; Festoff, B. W. The identification of neurotrophic factor as a transferrin. Fed. Expt. Biol. Soc. 156:151–156; 1983.

    CAS  Google Scholar 

  5. Berthois, Y.; Katzenellenbogen, J. A.; Katzenellenbogen, B. S. Phenol red in tissue media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. 83:2496–2500; 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Bissell, M. J.; Hall, G. Form and function in the mammary gland: the influence of the extracellular matrix. M. Neville and C. Daniel, eds. The Mammary Gland: Development, Regulation and Function. New York: Plenum Press; 1987.

    Google Scholar 

  7. Bluard-Deconinck, J.-M.; Masson, P. L.; Osinski, P. A.; Heremans, J. F. Amino acid sequence of cysteic peptides of lactoferrin and demonstration of similarities between lactoferrin and transferrin. Biochem. Biophys. Acta 365:311–317; 1974.

    PubMed  CAS  Google Scholar 

  8. Bradshaw, J. P.; White, D. A. Identification of a major N-glycosylated protein of rabbit mammary gland and its appearance during developmentin vivo. Int. J. Biochem. 17:175–185; 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Cleveland, D. N.; Fischer, S. G.; Kirschner, M. W.; Laemmli, U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252:1102–1106; 1977.

    PubMed  CAS  Google Scholar 

  10. Emerman, J. T.; Bartley, J. C.; Bissell, M. J. Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells. Exp. Cell Res. 134:241–250; 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Ekblom, P.; Thesleff, I. The role of transferrin and extracellular matrix components in kidney development. Modern Cell Biology, vol. 4. New York: Alan R. Liss, Inc.; 1985:85–127.

    Google Scholar 

  12. Hochwald, G. M.; Jacobsen, E. B.; Thobecke, G. J.14C-amino acid incorporation into transferrin and β-globulin in ectodermal glands in vitro. Fed. Proc. 23:557; 1964.

    Google Scholar 

  13. Idzerda, R. L.; Huebers, H.; Finch, C. A.; McKnight, G. S. Rat transferrin gene expression: Tissue-specific regulation by iron deficiency. Proc. Natl. Acad. Sci. USA 83:3723–3727; 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Kinkade, J. M.; Miller, W. W. K.; Segars, F. M. Isolation and characterization of murine lactoferrin. Biochim. Biophys. Acta 446:407–418; 1976.

    PubMed  CAS  Google Scholar 

  15. Lee, D. C.; McKnight, G. C.; Palmiters, B. D. The action of estrogen and progesterone on the expression of the transferrin gene. A comparison of the response in chick liver and oviduct. J. Biol. Chem. 253:3494–3503; 1978.

    PubMed  CAS  Google Scholar 

  16. Lee, E. Y.-H.; Parry, G.; Bissell, M. J. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98:146–155; 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, E. Y.-H.; Lee, W.-H.; Kaetzel, C. S.; Parry, G.; Bissell, M. J. Interaction of mouse mammary epithelial cells with collagenous substrata: Regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. USA 82:1419–1423; 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Masson, P. L.; Heremans, J. F. Lactoferrin in milk of different species. Comp. Biochem. Physiol. 39B:119–129; 1971.

    Google Scholar 

  19. Mescher, A. L.; Munaim, S. I. “Trophic” effect of transferrin on amphibian limb regeneration blastemas. J. Exp. Zool. 230:485–490; 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Morgan, E. H. Transferrin, biochemistry, physiology and clinical significance. Molec. Aspects Med. 4:1–123; 1981.

    Article  Google Scholar 

  21. Shindleman, J. E.; Ortmeyer, A. E.; Sussman, H. H. Demonstration of the transferrin receptor in human breast cancer tissue. Potential marker for identifying dividing cells. Int. J. Cancer 27:329–334; 1981.

    Article  Google Scholar 

  22. Suard, Y. L. M.; Haeuptle, M.-T.; Farinon, E.; Kraehenbuhl, J.-P. Cell proliferation and milk protein gene expression in rabbit mammary cell cultures. J. Cell Biol. 96:1425–1434; 1983.

    Article  PubMed  Google Scholar 

  23. Trowbridge, I. S.; Lopez, F. Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growthin vitro. Proc. Natl. Acad. Sci. USA 79:1175–1179; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the OHER office of U. S. DOE, contract DE-AC 03-76S F00098, and NIH grant BRSG RR05918.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.Y.H., Barcellos-Hoff, M.H., Chen, L.H. et al. Transferrin is a major mouse milk protein and is synthesized by mammary epithelial cells. In Vitro Cell Dev Biol 23, 221–226 (1987). https://doi.org/10.1007/BF02623583

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623583

Key words

Navigation