Skip to main content
Log in

Proteolytic enzymes and arachidonic acid metabolites produced by MRC-5 cells on various microcarrier substrates

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Human diploid fibroblasts were cultured on microcarriers made from DEAE-dextran, denatured collagen, DEAE-dextran linked to denatured collagen, and glass. Cells grown on these four substrates were examined for the production of proteolytic enzymes and arachidonic acid metabolites. Culture fluids from cells grown on the DEAE-dextran microcarriers contained the highest amounts of proteolytic enzyme activity. Both plasminogen-independent and plasminogen-dependent fibrinolytic activities were present and the plasminogen-dependent activity seemed to result from the presence of both urokinase and tissue plasminogen activator. Culture fluid from the cells grown on the glass microcarriers contained the least amount of protease activity, and nearly all of the plasminogen-activator activity seemed to be of the urokinase type. Protease activity in the culture fluids of cells grown on the other two substrates were intermediate. With regard to arachidonic acid metabolites, cells grown on the DEAE-dextran microcarriers produced the highest amounts of cyclooxygenase products but very low levels of lipoxygenase metabolites. Cells grown on the other three substrates produced comparable amounts of various cyclooxygenase products (lower than that produced by cells on the DEAE-dextrans substrate). Cells grown on the glass microcarriers also produced detectable amounts of two lipoxygenase metabolites—leukotriene B4 and leukotriene C4. Inasmuch as both proteolytic enzymes and arachidonic acid metabolites regulate basic cell properties, the differential amount of these metabolites observed in the culture fluids on the various substrates may contribute to the biological differences that exist on these substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burger, M. M. Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature 227:170–171; 1970.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, L. B.; Buchanan, J. M. Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc. Natl. Acad. Sci. USA 72:131–135; 1976.

    Article  Google Scholar 

  3. Coleman, P. L.; Green, G. D. J. A sensitive, coupled assay for plasminogen activator using a thiol ester substrate for plasmin. Ann. NY Acad. Sci. 370:617–626; 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Deutsch, D. G.; Mertz, E. T. Plasminogen: purification from human plasma by affinity chromatography. Science 170:1095–1096; 1970.

    Article  PubMed  CAS  Google Scholar 

  5. Deutsch, H. F. Preparation of immunoglobulin concentrates. In: Methods in immunology and immunochemistry, vol. 1. New York: Academic Press; 1967:315–322.

    Google Scholar 

  6. Fantone, J. C.; Elgas, L. J.; Weinberger, L., et al. Modulation of tumor cell adherence by prostaglandins. Oncology 40:421–426; 1983.

    PubMed  CAS  Google Scholar 

  7. Fantone, J. C.; Marasco, W. A.; Elgas, L. J., et al. Antiinflammatory effects of prostaglandin E1:In vivo modulation of formyl peptide chemotactic receptors on the rat neutrophil. J. Immunol. 130:1495–1497; 1983.

    PubMed  CAS  Google Scholar 

  8. Fenters, J. D.; Fordyce, P. A.; Gerin, J. L., et al. Propagation of Rhinovirus on WI-38 cell monolayers in rolling bottles. App. Microbiol. 15:1460–1466; 1967.

    Google Scholar 

  9. Fowler, R. J.. Drugs which inhibit prostaglandin biosynthesis. Pharmacol. Rev. 26:33–67; 1974.

    Google Scholar 

  10. Gebb, C.; Clark, J. M.; Hirtenstein, M. D., et al. Alternative surfaces for microcarrier culture of animal cells. Dev. Biol. Stand. 50:93–102; 1982.

    Google Scholar 

  11. Giard, D. J.; Thilly, W. G.; Wang, D. I. C., et al. Virus production with a newly developed microcarrier system. App. Environ. Microbiol. 34:668–672; 1977.

    CAS  Google Scholar 

  12. Goldberg, A. R.. Increased protease levels in transformed cells: a casein overlay assay for the detection of plasminogen activator production. Cell 2:95–102; 1974.

    Article  PubMed  CAS  Google Scholar 

  13. Goldberg, A. R. Involvement of cell and serum proteases in exposing tumor-specific agglutinin sites. Ann. NY Acad. Sci. 234:348–354; 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Goldfarb, R. H. Plasminogen activators. Ann. Rev. Med. Chem. 18:257–264; 1983.

    CAS  Google Scholar 

  15. Goldman, D. W.; Goetzl, E. J. Mediation and modulation of immediate hypersensitivity and inflammation by products of the oxygenation of arachidonic acid. In: Ward, P. A., ed. Immunology of inflammation: handbook of inflammation. Elsevier. Amsterdam 4:163–187; 1983.

    Google Scholar 

  16. Goodwin, J. S.; Bankhurst, A. D.; Messner, R. P. Suppression of human T-cell mitogenesis by prostaglandin. J. Exp. Med. 146:1719–1724; 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Goodwin, J. S.; Webb, D. R. Regulation of the immune response by prostaglandins. Clin. Immunol. Immunopathol. 15:106–113; 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Granelli-Piperno, A.; Reich, E. A study of proteases and protease inhibitor complexes in biological fluids. J. Exp. Med. 148:223–234; 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Griffith, J. B.; Thornton, B.; McEntee, I. The development and use of microcarrier and glass sphere culture techniques for the production of herpes simplex viruses. Dev. Biol. Stand. 50:103–110; 1982.

    Google Scholar 

  20. Hatcher, V. B.; Oberman, M. S.; Wertheim, M. S., et al. The relationship between surface protease activity and the rate of cell proliferation in normal and transformed cells. Biochem. Biophys. Res. Commun. 76:602–608; 1977.

    Article  CAS  Google Scholar 

  21. Hatcher, V. B.; Wertheim, M. S.; Rhee, C. Y., et al. Relationship between cell surface protease activity and doubling time in various normal and transformed cells. Biochim. Biophys. Acta. 451:499–510; 1976.

    PubMed  CAS  Google Scholar 

  22. Hood, E. G.; Wilson, E. L.; Dowdle, E. B. The regulation of tissue plasminogen activator activity by human fibroblasts. Cell 34:272–279; 1983.

    Google Scholar 

  23. House, W.; Shearer, M.; Maroudas, N. G. Method for bulk culture of animal cells on plastic film. Exp. Cell Res. 71:293–296; 1972.

    Article  PubMed  CAS  Google Scholar 

  24. Hynes, R. O. Role of surface alterations in cell transformation: the importance of proteases and serum proteins. Cell 1:147–156; 1974.

    Article  CAS  Google Scholar 

  25. Jimenez de Asua, L.; Clingan, L. D.; Rudland, P. S. Initiation of cell proliferation in cultured mouse fibroblasts by prostaglandin F. Proc. Natl. Acad. Sci. USA 72:2724–2728; 1975.

    Article  CAS  Google Scholar 

  26. Keese, C.; Giaever, I. Cell growth on liquid microcarriers. Science 219:1448–1449; 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Kunkel, S. L.; Kaercher, K.; Plewa, M., et al. Production of cyclooxygenase products and superoxide anion by macrophages in response to chemotactic factors. Prostaglandins 24:789–799; 1982.

    Article  PubMed  CAS  Google Scholar 

  28. Kunkel, S. L.; Thrall, R. S.; Kunkel, R. G., et al. Suppression of immune complex vasculitis in rats by prostaglandins. J. Clin. Invest. 64:1525–1529; 1979.

    Article  PubMed  CAS  Google Scholar 

  29. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  30. Laug, W. E.; Jones, P. A.; Benedict, W. F. Relationship between fibrinolysis of cultured cells and malignancy. JNCI 54:173–179; 1975.

    PubMed  CAS  Google Scholar 

  31. Lee, E. C.; Situ, R.; Fantone, J. C., et al. Functional responses of tumor cells to phorbol esters: Role for prostaglandins. Oncology 41:210–216; 1984.

    Article  PubMed  CAS  Google Scholar 

  32. Liebhaber, H.; Pajot, T.; Riordan, J. T. Growth of high titered Rubella virus in roller bottle cultures of Vero cells. Proc. Soc. Exp. Biol. Med. 130:12–14; 1969.

    PubMed  CAS  Google Scholar 

  33. Lowry, O. H.; Rosenbrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275; 1951.

    PubMed  CAS  Google Scholar 

  34. Mahan, M.; Meunier, J.; Newby, M., et al. Prostaglandin E2 production by EL-4 leukemia cells from C57 BL/6 mice: Mechanism for tumor dissemination. JNCI 74:191–195; 1985.

    PubMed  CAS  Google Scholar 

  35. Mensing, H.; Czarnetski, B. M. Leukotriene B4 inducesin vitro fibroblast chemotaxis. J. Invest. Dermatol. 82:9–12; 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Mokashi, S.; Delikatny, E. J.; Orr, F. W. Relationship between chemotaxis, chemokinesis, chemotactic modulators and cyclic nucleotide levels in tumor cells Cancer Res. 43:1980–1983; 1983.

    PubMed  CAS  Google Scholar 

  37. Morley, J.; Bray, M. A.; Jones, R. W., et al. Prostaglandin and thromboxane production by human and guinea-pig macrophages and leukocytes. Prostaglandins 17:729–736; 1979.

    Article  PubMed  CAS  Google Scholar 

  38. Nielsen, V.; Johansson, A. Biosilon, optimal culture conditions and various research scale culture techniques. Dev. Biol. Stand. 46:131–136; 1980.

    PubMed  CAS  Google Scholar 

  39. Obrenovitch, A.; Maintier, C.; Sene, C., et al. Microcarrier culture of fibroblastic cells on modified trisacryl beads. Biol. Cell 46:249–256; 1982.

    CAS  Google Scholar 

  40. O'Flaherty, J. T.; Kreutzer, D. L.; Ward, P. A. Effect of prostaglandins E1, E2 and F2α on neutrophil aggregation. Prostaglandins 17:201–210; 1979.

    Article  PubMed  Google Scholar 

  41. Ossowski, L.; Unkeless, J. C.; Tobia, A., et al. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. II. Mammalian fibroblast cultures transformed by DNA and RNA tumour viruses. J. Exp. Med. 137:112–125; 1973.

    Article  PubMed  CAS  Google Scholar 

  42. Ossowski, L.; Quigley, J. P.; Kellerman, G. M.. et al. Fibronolysis associated with oncogenic transformation: Requirement of plasminogen for correlated change in cellular morphology, colony formation in agar and cell migration. J. Exp. Med. 138:1056–1064; 1973.

    Article  PubMed  CAS  Google Scholar 

  43. Pearlstein, E.; Hynes, R. O.; Franks, L. M. et al. Surface proteins and fibrinolytic activity of cultured mammalian cells. Cancer Res. 36:1475–1480; 1975.

    Google Scholar 

  44. Rivkin, I.; Rosenblatt, J.; Becker, E. L. The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. The inhibition of neutrophil movement and elevation of cyclic AMP levels by catacholamines, prostaglandins, theophylline and cholera toxin. J. Immunol. 115:1126–1134; 1975.

    PubMed  CAS  Google Scholar 

  45. Showell, H. J.; Naccache, P. H.; Sha'af, R. I., et al Inhibition of rabbit neutrophil lysozomal enzyme secretion, non-stimulated and chemotactic factor-stimulated locomotion by nordihydroguaiaretic acid. Life Sci. 27:421–426; 1980.

    Article  PubMed  CAS  Google Scholar 

  46. Smolen, J. E.; Weissmann, G. Effects of indomethacin, 5,8,11,14-eicosatetraynoic acid andp-bromophenacyl bromide on lysozomal enzyme release and superoxide anion generation by human polymorphonuclear leukocytes. Biochem. Pharmacol. 29:533–538; 1980.

    Article  PubMed  CAS  Google Scholar 

  47. Spier, R. E.; Whiteside, J. P. The production of foot-and-mouth disease virus from BHK 21 C 13 cells grown on the surface of DEAE-Sephadex A50 beads. Biotechnol. Bioeng. 18:659–667; 1967.

    Article  Google Scholar 

  48. Snyderman, R.; Goetzl, E. J. Molecular and cellular mechanisms of leukocyte chemotaxis. Science 213:830–836; 1981.

    Article  PubMed  CAS  Google Scholar 

  49. Unkeless, J. C.; Tobia, A.; Ossowski, L., et al. An enzymic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by avian RNA tumour viruses. J. Exp. Med. 137:85–111; 1973.

    Article  PubMed  CAS  Google Scholar 

  50. Vanderhoek, J. Y.; Bailey, J. M. Activation of a 15-lipoxygenase/leukotriene pathway in human polymorphonuclear leukocytes by the antiinflammatory agent ibuprofen. J. Biol. Chem. 259:6572–6756; 1984.

    Google Scholar 

  51. Van Wezel, A. L. Growth of cell strains and primary cells on microcarriers. Nature 216:65–66; 1967.

    Article  Google Scholar 

  52. Varani, J.; Dame, M.; Beals, T. F., et al. Growth of three established cell lines on glass microcarriers. Biotechnol. Bioeng. 25:1359–1372; 1983.

    Article  Google Scholar 

  53. Varani, J.; Dame, M.; Rediske, J., et al. Substrate-dependent differences in growth and biological properties of fibroblasts and epithelial cells grown in microcarier culture. J. Biol. Stand. 13:67–76; 1985.

    Article  PubMed  CAS  Google Scholar 

  54. Varani, J.; Orr, W.; Ward, P. A. Comparison of cell attachment and caseinolytic activities of five tumour cell types. J. Cell. Sci. 34:133–134; 1978.

    PubMed  CAS  Google Scholar 

  55. Varani, J.; Orr, W.; Ward, P. A. Cell-associated proteases affects tumor cell migrationin vitro. J. Cell Sci. 36:241–252; 1979.

    PubMed  CAS  Google Scholar 

  56. Varani, J.; Perone, P. Response of Walker 256 carcinosarcoma cells to 12-0-tetradecanoyl phorbol-13-acetate: Possible regulation by endogenous cyclooxygenase metabolites. JNCI 74:165–172; 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported in part by grants R44 CA 36656 and IK08HL01332-01 from the Public Health Service, U. S. Department of Health and Human Services and by grant BC-512 from the American Cancer Society. JDH is a research fellow of the American Lung Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varani, J., Hasday, J.D., Sitrin, R.G. et al. Proteolytic enzymes and arachidonic acid metabolites produced by MRC-5 cells on various microcarrier substrates. In Vitro Cell Dev Biol 22, 575–582 (1986). https://doi.org/10.1007/BF02623516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623516

Key words

Navigation