Skip to main content
Log in

Sodium butyrate induced alterations in lysosomal enzyme activity

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Treatment of cultured HeLa cells with 5 mM sodium butyrate causes an inhibition of growth as well as extensive chemical and morphological differentiation. Lysosomal enzyme activity changes have been associated with both normal and neoplastic growth as well as many aspects of the neoplastic process. The comparative ultrastructural results show that the butyrate-treated cells have a more extensive internal membraneous system than the untreated cells, whereas other organelles seem unaffected by the butyrate treatment. Methods for the histochemical localization of lysosomal acid phosphatase show a twofold increase in particulate reaction product in the butyrate-treated HeLa cells. Isolation of lysosomes followed by a comparative enzyme analysis shows a two to three fold increase in acid phosphatase activity per cell after 24 h of butyrate treatment, as well as three to four fold increase in β-glucuronidase activity. These increases reverse within 24 h of removal of the butyrate from the culture medium. These results as interpreted suggest that butyrate treatment may be preventing sublethal autolysis by arresting the leakage of the lysosomal enzymes from the lysosome into the cytosol and thus allowing the cell to chemically and morphologically differentiate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allison, A. C.; Dingle, J. T. Lysosomes and cancer. In: Fell, H. B., eds. Lysosomes in biology and pathology, vol. 196. New York: American Elsevier Publishing Co.; 1969:178–204.

    Google Scholar 

  2. Allison, A. C. Lysosomes in cancer cell. J. Clin. Path. Suppl. (Roy. Cell Path.) 7: 43–50; 1972.

    Google Scholar 

  3. Burger, M. M. Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature 227: 170–171; 1970.

    Article  PubMed  CAS  Google Scholar 

  4. DeDuve, C. Lysosomes, a new group of cytoplasmic particles. In: Hayashi, T., ed. Subcellular particles. New York: Ronald Press; 1959; 128–159.

    Google Scholar 

  5. Ezzel, R. M.; Szego, C. M. Luteinizing hormonal accelerated redistribution of lysosome-like organelles preceding dissolution of nuclear envelope in rat occytes maturing in vitro. J. Cell Biol. 82: 264–277; 1979.

    Article  Google Scholar 

  6. Fishman, P. H.; Bradley, R. H.; Henneberry, R. C. Butyrate induced glycolipid biosynthesis in HeLa cells: properties of the induced sialotransferase. Arch. Biochem. Biophys. 172: 618–626; 1974.

    Article  Google Scholar 

  7. Fiszer-Szafarz, B.; Nadal, C. Lysosomal enzyme activities in the regenerating rat liver. Cancer Res. 37: 354–357; 1977.

    PubMed  CAS  Google Scholar 

  8. Ginsburg, E.; Salomon, D.; Streevalsan, T.; et al. Growth inhibition and morphological changes caused by lipophilic acids in mammalian cells. Proc. Natl Acad. Sci. USA 70: 2157–2161; 1973.

    Article  Google Scholar 

  9. Gomori, G. Histochemical methods for acid phosphatase. J. Histochem. Cytochem. 4: 453–461; 1956.

    PubMed  CAS  Google Scholar 

  10. Hagopian, H. K. Effect of n-butyrate on DNA synthesis in chick fibroblasts and HeLa cells. Cell 12: 855–860; 1977.

    Article  PubMed  CAS  Google Scholar 

  11. Henneberry, R. C.; Fishman, P. H.; Freese, E. Morphological changes in cultured mammalian cells: prevention by the calcium ionophore A23187 Cell 5: 1–9; 1975.

    Article  PubMed  CAS  Google Scholar 

  12. Henneberry, R. C.; Fishman, P. H. Morphological and biochemical differentiation in HeLa cells. Exp. Cell Res. 103: 55–62; 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Horvat, A.; Acs, G. Induction of lysosomal enzymes in contact inhibited 3T3 cells. J. Cell Physiol. 83: 59–68; 1973.

    Article  Google Scholar 

  14. Kaplow, L. S.; Burnstone, M. S. Cytochemical demonstration of acid phosphatase in hematopoietic cells in health and in various hematological disorders using azo dye techniques. J. Histochem. Cytochem. 12: 805–811; 1964.

    PubMed  CAS  Google Scholar 

  15. Kennedy, A. R.; Little, J. B. Protease inhibitors suppress radiation-induced malignant transformation in vitro. Nature 276: 825–826; 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Korok, T.; Drevon, C. Inhibition of chemical transformation in C3H/10T1/2 cells by protease inhibitors. Cancer Res. 39: 2755–2761; 1976.

    Google Scholar 

  17. Kruh, J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell. Biochem. 42: 65–82; 1982.

    PubMed  CAS  Google Scholar 

  18. Lanzerotti, R. H.; Gullino, P. M. Activities and quantities of lysosomal enzymes during mammary tumor regression. Cancer Res. 32: 2679–2685; 1972.

    PubMed  CAS  Google Scholar 

  19. Maciera-Coelho, A.; Garcia-Biraly, E.; Adrian, M. Changes in lysosomal associated structures in human fibroblasts kept in resting phase (35974). Proc. Soc. Exp. Biol. Med. 138: 712–718; 1971.

    PubMed  CAS  Google Scholar 

  20. Maggi, V. A study of lysosomal ACH phosphatase during mitosis in HeLa cells. J. R. Microbiol. Soc. 85: 291–295; 1965.

    Google Scholar 

  21. Nicholson, R. I. Influence of altered lysosomal enzyme activities on the regression of DMBA-induced rat mammary tumors. Eur. J. Cancer 13: 1225–1230; 1977.

    PubMed  CAS  Google Scholar 

  22. Poole, A. R. Tumor lysosomal enzymes and invasive growth. In: Dingle, J. T.; Fell, H. B.; eds. Lysosomes in biology and pathology. New York: American Elsevier Publishing Co.; 1979;304–335.

    Google Scholar 

  23. Poste, G. L. Sublethal autolysis. Exp. Cell Res. 67: 11–16; 1972.

    Article  Google Scholar 

  24. Prasad, K. N.; Sinha, P. K. Effect of sodium butyrate on mammalian cells in culture: a review. In Vitro 12: 125–132; 1976.

    Article  PubMed  CAS  Google Scholar 

  25. Quigley, J. P. Proteolytic enzymes of normal and malignant cells. In: Hynes, R. O., ed. Surfaces of normal and malignant cells. Sussex, England: Wiley; 1979: 247–285.

    Google Scholar 

  26. Schersten, T.; Lundholm, K. Lysosomal enzyme activity in muscle tissue from patients with malignant tumors. Cancer 30: 1246–1251; 1972.

    Article  PubMed  CAS  Google Scholar 

  27. Schneider, F. H. Effects of sodium butyrate on mouse neuroblastoma cells in culture. Biochem. Pharmacol. 25: 2309–2317; 1976.

    Article  PubMed  CAS  Google Scholar 

  28. Shamberger, R. J. Lysosomal enzyme changes in growing and regressing mammary tumors. Biochem. J. 111: 375–383; 1969.

    PubMed  CAS  Google Scholar 

  29. Simmons, J. L.; Fishman, P. H.; Freese, E.; et al. Morphological alterations and gangliosides sialotransferase activity induced by small fatty acids in HeLa cells. J. Cell Biol. 66:414–424; 1975.

    Article  PubMed  CAS  Google Scholar 

  30. Tallman, J. F.; Smith, C. C.; Henneberry, R. C. Induction of functional β-adrenergic receptors in HeLa cells. Proc. Natl. Acad. Sci. USA 74: 873–877; 1977.

    Article  PubMed  CAS  Google Scholar 

  31. Weiss, L.; Holyoke, E. D. Some effect of hypervitaminosis on metastasis of spontaneous breast cancer in mice. J. Natl. Cancer Inst. 43: 1045–1053; 1969.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by National Institute of Health Grant HD 14085-03.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, R.E. Sodium butyrate induced alterations in lysosomal enzyme activity. In Vitro Cell Dev Biol 21, 373–381 (1985). https://doi.org/10.1007/BF02623468

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623468

Key words

Navigation