Skip to main content
Log in

Short-term primary culture of acinar-intercalated duct complexes from rat submandibular glands

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Acinar-intercalated duct complexes dissociated from rat submandibular glands have been shown to be an excellent model for studying secretory responses of salivary gland components. However, they are functionally normal for only a few hours. We undertook a systematic manipulation of primary culture conditions in an attempt to extend the useful life of the complexes. The major modifications that were tested were increased oxygenation in increments to 95%; substitution of norepinephrine or carbamylcholine or both for isoproterenol in the medium; different sources of collagen for and addition of laminin, fibronectin and/or type IV collagen to the matrix gel; and varying the thickness of the collagen gel, richness of the cell suspension inoculate, and sources and concentrations of sera in the medium. Progress was monitored by light microscopic evaluation of routine sections of specimens until improved maintenance of acinar and other cells warranted carrying parallel cultures for biochemical, histochemical, and ultrastructural analyses. Best results were obtained with 90% O2, laminin in rat tail collagen gel, 10% fetal bovine serum, and 3 μM isoproterenol. Morphologically, there was good survival of acini and intercalated ducts after 1 d, with decreased acinar size being correlated with secretory response to the isoproterenol. Reorganization and considerable mitotic activity were seen at 2, 3, and 4 d, with most clusters of cells becoming much larger than the original complexes. During this period acinar cells steadily became less differentiated and their numbers decreased in proportion to intercalated duct or undifferentiated cells. However, there was good overall survival through 7 d. Biochemical analysis indicated that the cells were able to maintain significant biosynthetic activity for 4 d, with DNA, RNA, protein, and glycoprotein synthetic rates increasing over the culture period, but the secretory capacity of the cells diminished during the primary culture period, with mucin biosynthesis and secretion decreasing significantly after 1 d in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K.; Dawes, C. The effects of electrical and pharmacological stimulation on the types of proteins secreted by rat parotid and submandibular glands. Arch. Oral Biol. 23:367–372; 1978.

    Article  PubMed  CAS  Google Scholar 

  2. Ball, W. D.; Redman, R. S. Two independently regulated secretory systems within the acini of the submandibular gland of the neonatal rat. Eur. J. Cell Biol 33:112–122; 1984.

    PubMed  CAS  Google Scholar 

  3. Bdolah, A.; Ben-Zvi, R.; Schramm, M. The mechanism of enzyme secretion by the cell. II Secretion of amylase and other proteins by slices of rat parotid gland. Arch. Biochem. Biophys. 104:58–66; 1964.

    Article  PubMed  CAS  Google Scholar 

  4. Brannon, P. M.; Orrison, B. M.; Kretchmer, N. Primary cultures of rat pancreatic acinar cells in serum-free medium. In Vitro 21:6–14; 1985.

    CAS  Google Scholar 

  5. Brown, A. M. A method for the initiation and maintenance of permanent rat submandibular gland epithelial cell cultures. Arch. Oral Biol. 19:343–346; 1974.b

    Article  PubMed  CAS  Google Scholar 

  6. Cutler, L. S.; Chaudhry, A. P. Differentiation of the myoepithelial cells of the rat submandibular gland in vivo and in vitro: An ultrastructural study. J. Morphol. 140:343–354; 1973.

    Article  PubMed  CAS  Google Scholar 

  7. Denny, P. C.; Denny, P. A. Non-development aodifications induced in submandibular glands of young rats by chronic isoproterenol administration. Arch. Oral Biol. 26:297–301; 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Fleming, N.; Teitelman, M.; Sturgess, J. M. The secretory response in dissociated acini from the rat submandibular gland. J. Morphol. 163:219–230; 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Garrett, J. R.; Thulin, A.; Kidd, A. Variations in parasym-pathetic secretory and structural responses from differences in the prestimulation state of parotid acini in rats. Cell Tiss. Res. 188:235–250; 1978.

    Article  CAS  Google Scholar 

  10. Hammer, M. O.; Sheridan, J. D. Electrical coupling and dye transfer between acinar cells in rat salivary glands. J. Physiol. 275:495–505; 1978.

    PubMed  CAS  Google Scholar 

  11. Johnson, D. A. Differences in basic proline-rich proteins in rat parotid saliva following chronic isoproterenol treatment or maintenance on a liquid diet. Arch. Oral Biol. 28:549–554; 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Jones, R. O. Thein vitro effect of epithelial growth factor on rat organ tissues. Exp. Cell Res. 43:645–656; 1966.

    Article  PubMed  CAS  Google Scholar 

  13. Kumegawa, M.; Takuma, T.; Hosoda, S., et al. Effects of hormones on differentiation of parotid glands of suckling mice in vitro. Biochem. Biophys. Acta 544:53–61; 1978.

    PubMed  CAS  Google Scholar 

  14. Kumegawa, M.; Yajima, T.; Maeda, M., et al. Synergistic effects of diet, thyroxine and glucocorticoid hormones on amylase activity in parotid glands of growing rats. Arch. Oral. Biol. 26:631–633; 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Lamey, P. J.; Ferguson, M. M.; Marshall, W. The growth and ductal epithelial response of mouse submandibular glands to selected neurotransmittersin vitro. Arch. Oral. Biol. 27:747–751; 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Lamey, P. J.; Marshall, W.; Ferguson, M. M. A quantitative study on growth and cell population identification in murine salivary gland culture. Arch. Oral Biol. 27:367–375; 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Lawson, K. A. Morphogenesis and functional differentiation of the rat parotid glandin vivo andin vitro. J. Embryol. Exp. Morphol. 24:411–424; 1970.

    PubMed  CAS  Google Scholar 

  18. Leslie, B. A.; Putney, J. A., Jr.; Sherman, J. M. Alpha-adrenergic, beta-adrenergic, and cholinergic mechanisms for amylase secretion by rat parotid glands in vitro. J. Physiol. (Lond) 260:351–370; 1976.

    CAS  Google Scholar 

  19. Lucas, D. R. The effect of hydrocortisone, oxygen tension and other factors on the survival of the submandibular, sublingual, parotid and exorbital lacrimal glands in organ culture. Exp. Cell Res. 55:229–242; 1969.

    Article  PubMed  CAS  Google Scholar 

  20. Luft, J. H. Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9:409–414; 1961.

    Article  PubMed  CAS  Google Scholar 

  21. Mangos, J. A.; McSherry, N. R.; Butcher, F., et al. Dispersed rat parotid acinar cells. I. Morphological and functional characterization. Am. J. Physiol. 229:553–559; 1975.

    PubMed  CAS  Google Scholar 

  22. Mercante, M. L. On thein vitro behavior of mouse submaxillary gland cells. J. Cell Sci. 13:441–445; 1973.

    Google Scholar 

  23. Mark, M. R.; Sharawy, M.; Pennington, C. Surface morphology of normal and enzymatically-treated rat parotid glands. Scan. Electron Microsc. 3:137–145; 1981.

    Google Scholar 

  24. Mowry, R. W. The special value of methods that color both acidic and vicinal hydroxyl groups in the histochemical study of mucins. With revised directions for the colloidal iron stain, the use of alcian blue 8GX and their combinations with the periodic acid-Schiff reaction. Ann. NY Acad. Sci. 106:402–423; 1963.

    Article  CAS  Google Scholar 

  25. O'Dell, N. L.; Sharawy, M.; Pennington, C. B. Effects of prior culture or isoproterenol injections on the regeneration of rat submandibular autografts. Anat. Rec. 206:11–21; 1983.

    Article  PubMed  Google Scholar 

  26. Oliver, C. Isolation and maintenance of differentiated exocrine gland cells in vitro. In Vitro 16:292–305; 1980.

    Google Scholar 

  27. Ovama, V. I.; Eagle, H. Measurement of cell growth in tissue culture with a phenol reagent (Folin-Ciocalteau). Proc. Soc. Exp. Biol. Med. 91:305–307; 1956.

    Google Scholar 

  28. Quissell, D. O. Secretory response of dispersed rat submandibular cells. I. Potassium release. Am. J. Physiol. 238:C90-C98; 1980.

    PubMed  CAS  Google Scholar 

  29. Quissell, D. O.; Barzen, K. A. Secretory response of dispersed rat submandibular cells. II. Mucin secretion. Am. J. Physiol. 238:C99-C106; 1980.

    PubMed  CAS  Google Scholar 

  30. Quissell, D. O.; Barzen, K. A.; Lafferty, J. L. Role of calcium and cAMP in the regulation of rat submandibular mucin secretion. Am. J. Physiol. 241:C76-C85; 1981.

    PubMed  CAS  Google Scholar 

  31. Quissell, D. O.; Diesher, L. M.; Barzen, K. A. Role of protein phosphorylation in regulating rat submandibular mucin secretion. Am. J. Physiol. 245:G44-G53; 1983.

    PubMed  CAS  Google Scholar 

  32. Quissell, D. O.; Mawhinney, T. P.; Barzen, K. A., et al. Comparisonin vitro of the incorporation ofd-[2-3H(N)]-mannose andd-[1-14C]-glucosamine into glycoproteins of dispersed rat submandibular salivary gland cells. Arch. Oral. Biol. 28:827–831; 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Quissell, D. O.; Redman, R. S. Functional characteristics of dispersed rat submandibular cells. Proc. Natl. Acad. Sci. USA 76:2789–2793; 1979.

    Article  PubMed  CAS  Google Scholar 

  34. Rawlinson, H. E. Cytological changes after autonomic and adrenalin stimulation of the cat's submaxillary gland. Anat. Rec. 57:289–301; 1933.

    Article  Google Scholar 

  35. Richards, G. M. Modifications of the diphenylamine reaction giving increasing sensitivity and simplicity in the estimation of DNA. Anal. Biochem. 57:369–376; 1974.

    Article  PubMed  CAS  Google Scholar 

  36. Robinovitch, M. R.; Keller, P. J.; Johnson, D. A., et al. Changes in rat parotid salivary proteins induced by chronic isoproterenol administration. J. Dent. Res. 56:290–303; 1977.

    PubMed  CAS  Google Scholar 

  37. Robinovitch, M. R.; Smuckler, E. A.; Sreebny, L. M. Protein synthesis in a cell-free system derived from the rat parotid gland. J. Biol. Chem. 244:5361–5367; 1969.

    PubMed  CAS  Google Scholar 

  38. Rufo, M. B.; Barka, T. Cell differentiation in the terminal tubule of fetal rat submandibular gland in organ culture. Anat. Rec. 184:301–310; 1976.

    Article  PubMed  CAS  Google Scholar 

  39. Selye, H.; Cantin, M.; Vielleux, R. Abnormal growth and sclerosis of the salivary glands induced by chronic treatment with isoproterenol. Growth 25:243–248; 1961.

    PubMed  CAS  Google Scholar 

  40. Snell, R. S.; Garrett, J. R. The effect of postganglionic sympathectomy on the structure of the submandibular and major sublingual salivary glands of the rat. Z. Zellforsch 48:639–652; 1958.

    Article  PubMed  CAS  Google Scholar 

  41. Sreebny, L. M.; Johnson, D. A.; Robinovitch, M. R. Functional regulation of protein synthesis in rat parotid gland. J. Biol. Chem. 246:3879–3884; 1971.

    PubMed  CAS  Google Scholar 

  42. Takuma, T.; Teitelman, M.; Sturgess, J. M. α-Adrenergic inhibition of protein synthesis in rat submandibular cells. Am. J. Physiol. 247:G284-G289; 1984.

    PubMed  CAS  Google Scholar 

  43. Tapp, R. L. An attempt to maintain cultures from the submandibular gland of the adult ratin vitro. Exp. Cell Res. 47:536–544; 1967.

    Article  PubMed  CAS  Google Scholar 

  44. Tapp, R. L. The mechanism of watery vacuolization in the acinar cells of the submandibular gland. J. Cell Sci. 4:55–70; 1969.

    PubMed  CAS  Google Scholar 

  45. Templeton, D. Augmented amylase release from rat parotid slices, in vitro. Pflugers Arch. 384:287–289; 1980.

    Article  PubMed  CAS  Google Scholar 

  46. Trowell, O. A. The culture of mature organs in a synthetic medium. Exp. Cell Res. 16:118–147; 1959.

    Article  PubMed  CAS  Google Scholar 

  47. Wigley, C. B.; Franks, L. M. Salivary epithelial cells in primary culture: characterization of their growth and functional properties. J. Cell Sci. 20:149–165; 1976.

    PubMed  CAS  Google Scholar 

  48. Yang, J.; Lawson, L.; Nandi, S. Three dimensional growth and morphogensesis of mouse submandibular epithelial cells in serum-free primary culture. Exp. Cell Res. 137:481–486; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by a grant from the Thrasher Research Fund, by Grant AM 33835 from the National Institutes of Health, Bethesda MD, and by the Medical Research Service of the Veterans Administration, Washington, D.C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quissell, D.O., Redman, R.S. & Mark, M.R. Short-term primary culture of acinar-intercalated duct complexes from rat submandibular glands. In Vitro Cell Dev Biol 22, 469–480 (1986). https://doi.org/10.1007/BF02623448

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623448

Key words

Navigation