Skip to main content
Log in

Estrogen-dependent DNA synthesis in cultures ofxenopus liver parenchymal cells

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

We have recently shown that extensive proliferation of liver parenchymal cells takes place in adult maleXenopus frogs in response to estradiol-17β, which also induces synthesis and secretion of vitellogenin, the precursor of yolk proteins. We demonstrate here that liver parenchymal cells from adult male animals can be maintained for several weeks in a defined tissue culture medium containing added insulin, dexamethasone, and triiodothyronine. Under these conditions the cells do not divide, but can synthesize DNA. Maximum DNA synthesis occurs in cells that have achieved monolayer morphology under low plating densities. Estradiol-17β causes a dose-dependent increase in the number of cells synthesizing DNA, as well as inducing synthesis of vitellogenin. Estrogen-dependent, but not background, DNA synthesis is inhibited by the antiestrogen tamoxifen. These results imply that estradiol-17β acts directly on liver cells to initiate DNA replication, probably by interaction with a receptor protein and induction of specific gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J. N. The effect of steroid hormones on gene transcription. In: Biological regulation and development vol. 3B. Goldberger, R. F. Yamamoto, K. R. New York: Plenum Press; 1984:169.

    Google Scholar 

  2. Brock, M. L.; Shapiro, D. J. Estrogen regulates the absolute rate of transcription of theXenopus laevis vitellogenin genes J. Biol. Chem. 258:5449–5455; 1983.

    PubMed  CAS  Google Scholar 

  3. Bucher, N. L. R.; Swaffield, M. N. Regulation of hepatic regeneration in rats by synergistic action of insulin and glucagon. Proc. Natl. Acad. Sci. USA 72:1157–1160; 1975.

    Article  PubMed  CAS  Google Scholar 

  4. Chalbos, D.; Vignon, F.; Keydar, I., et al. Estrogens stimulate cell proliferation and induced secretory proteins in a human breast cancer cell line (T47D). J. Clin. Endocrinol. Metab. 55:276–283; 1982.

    PubMed  CAS  Google Scholar 

  5. Green, C. D.; Tata, J. R. Direct induction by estradiol of vitellogenin synthesis in organ cultures of maleXenopus laevis Cell 7:131–139; 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Gschwendt, M.; Rincke, G.; Schuster, T. Inhibition of the estrogen-induced synthesis of vitellogenin mRNA in chick liver by tamoxifen. Biochem. Biophys. Res. Comm. 112:425–430; 1983.

    Article  PubMed  CAS  Google Scholar 

  7. Hasegawa, K.; Watanabe, K.; Koga, M. Induction of mitosis in primary cultures of adult rat hepatocytes under serum-free conditions. Biochem. Biophys. Res. Comm. 104:259–265; 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Hayward, M. A.; Barton, M. C.; Shapiro, D. J. Coordinate estrogen induction of vitellogenin and small serum protein mRNA inXenopus laevis liver. Mol. Cell. Endocrinol. 39:91–98; 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Holland, L. J.; Wangh, L. J. Estrogen induction of a 45kd secreted protein coordinately with vitellogenin inXenopus Liver. Cellular and Molecular Endocrinology, Submitted.

  10. Horwitz, K. B.; McGuire, W.L. Nuclear mechanisms of estrogen action. J. Biol. Chem. 253:8185–8191; 1978.

    PubMed  CAS  Google Scholar 

  11. Humasson, G. L. Animal tissue techniques. San Francisco: W. H. Freeman; 1972:523.

    Google Scholar 

  12. Johnson-Wint, B.; Hollis, S. A rapid in situ deoxyribonucleic acid assay for determining cell number in culture and tissue. Anal. Biochem. 122:338–344; 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Katzenellenbogen, B. S.; Gorski, J. Estrogen actions on synthesis of macromolecules in target cells. In: Biochemical actions of hormones, Litwack, G. ed. vol. 3. New York: Academic Press; 1975:183.

    Google Scholar 

  14. Kaye, A. M.; Sheratzky, D.; Lindner, H. R. Kinetics of DNA synthesis in immature rat uterus: age dependence and estradiol stimulation. Biochem. Biophys. Acta. 261:475–486; 1972.

    CAS  Google Scholar 

  15. Laishes, B. A.; Williams, G. M. Conditions affecting primary cell cultures of functional adult rat hepatocytes II. Dexamethasone enhanced longevity and maintenance of morphology. In Vitro 12:821–832; 1976.

    PubMed  CAS  Google Scholar 

  16. Leffert, H. L.; Koch, K. S. Hepatocyte growth regulation by hormones in chemically defined media: A two-signal hypothesis. In: Sato, G. H.; Pardee, A. B.; Sirbasku, D. A., eds. Growth of cells in hormonally defined media. Cold Spring Harbor, NY: Conferences on Cell Proliferation 9. 1982: 597.

  17. McGowan, J. A.; Bucher, N. L. R. Pyruvate promotion of DNA synthesis in serum-free primary cultures of adult rat hepatocytes. In Vitro 19:159–166; 1983.

    Article  PubMed  CAS  Google Scholar 

  18. may, F. E. B.; Ryffel, G. U.; Weber, R., et al. Estrogen dramatically decreases albumin mRNA levels and albumin synthesis inXenopus laevis liver. J. Biol. Chem. 257:13919–13923; 1982.

    PubMed  CAS  Google Scholar 

  19. Morley, C. G. D.; Kingdom, H. S. Use of3H-thymidine for measurement of DNA synthesis in rat liver—A warning. Anal. Biochem. 45:298–305; 1972.

    Article  PubMed  CAS  Google Scholar 

  20. Morley, C. G. D.; Boyer, J. L. Stimulation of hepatocellular proliferation by a serum factor from thioacetamide-treated rats. Biochim. Biophys. Acta 477:165–176; 1977.

    PubMed  CAS  Google Scholar 

  21. Nakamura, T.; Yoshimoto, K.; Nakayama, Y., et al. Reciprocal modulation of growth and differentiated functions of mature rat hepatocytes in primary culture by cell-cell contact and cell membranes. Proc. Natl. Acad. Sci. USA 80:7229–7233; 1983.

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura, T.; Nakayama, Y.; Teramoto, H., et al. Loss of reciprocal modulations of growth and liver function of hepatoma cells in culture by contact with cells or cell membranes. Proc. Natl. Acad. Sci. USA 81:6398–6402; 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Oka, T.; Schimke, R. T. Interaction of estrogen and progesterone in chick oviduct development I. Antagonistic effect of progesterone on estrogen-induced proliferation and differentiation of tubular gland cells. J. Cell Biol. 41:816–831; 1969.

    Article  PubMed  CAS  Google Scholar 

  24. Palmiter, R. D.; Wrenn, J. T. Interaction of estrogen and progesterone in chick oviduct development III. Tubular gland cell cytodifferentiation. J. Cell Biol. 50:598–615; 1971.

    Article  PubMed  CAS  Google Scholar 

  25. Richman, R. A.; Claus, T. H.; Pilkis, S. J., et al Hormonal stimulation of DNA synthesis in primary cultures of adult rat hepatocytes. Proc. Natl. Acad. Sci. USA 73:3589–3593; 1976.

    Article  PubMed  CAS  Google Scholar 

  26. Seaver, S. S.; Van der Bosch, J.; Sato, G. The chick oviduct in primary tissue cultures. Exp. Cell Res. 155:241–251; 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Shapiro, D. J.; Brock, M. L.; Hayward, M. A. Estrogen receptor regulation of vitellogenin gene transcription and chromatin structure. In: Roy, A. K. Clark, J. H., eds. Gene regulation by steroid hormones II. Amsterdam: Springer-Verlag; 1983:61.

    Google Scholar 

  28. Shyamala, G.; Ferenczy, A. The nonresponsiveness of lactating mammary gland to estradiol. Endocrinology 110:1249–1256; 1982

    PubMed  CAS  Google Scholar 

  29. Sirbasku, D. A. Estromedins: Uterine-derived growth factors for estrogen-responsive tumor cells. In: Jimenez de Asus, ed. Control mechanisms in animal cells. New York: Raven; 1981:293.

    Google Scholar 

  30. Spolski, R. J.; Schneider, W.; Wangh, L. J. Estrogen-dependent DNA synthesis and parenchymal cell proliferation in the liver of adult maleXenopus frogs. Dev. Biol. 108:332–340. 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Socher, S. H.; O'Malley, B. W. Estrogen-mediated cell proliferation during chick oviduct development and its modulation by progesterone. Dev. Biol. 30:411–417; 1973.

    Article  CAS  Google Scholar 

  32. Soto, A. M.; Sonnenschein, C. Mechanism of estrogen action on cellular proliferation: evidence for indirect and negative control on cloned breast tumor cells. Biochem. Biophys. Res. Commun. 122:1097–1103; 1984.

    Article  PubMed  CAS  Google Scholar 

  33. Tomomura, A.; Nakamura, T.; Ichihara, A. Role of the cytoskeleton in glycogenolysis stimulated by glucagon in primary cultures of adult rat hepatocytes. Biochem. Biophys. Res. Commun. 97:1276–1282; 1980.

    Article  PubMed  CAS  Google Scholar 

  34. Topper, Y. J.; Freeman, C. S. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1106; 1980.

    PubMed  CAS  Google Scholar 

  35. Wahli, W.; Dawid, I. B.; Ryffel, G. U., et al. Vitellogenesis and the vitellogenin gene family. Science 212:298–304; 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Wangh, L. J.; Osborne, J. A.; Hentschel, C. C., et al. Parenchymal cells purified fromXenopus liver and maintained in primary culture synthesize vitellogenin in response to estradiol-17β and serum albumin in response to dexamethasone. Dev. Biol. 70:479–499; 1979.

    Article  PubMed  CAS  Google Scholar 

  37. Wangh, L. J. Glucocorticoids act together with estrogens and thyroid hormones in regulating the synthesis and secretion ofXenopus vitellogenin, serum albumin, and fibrinogen. Dev. Biol. 89:294–298: 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Wangh, L. J.; Holland, L. J.; Spolski, R. J., et al.Xenopus fibrinogen. Characterization of subunits and hormonal regulation of biosynthesis. J. Biol. Chem. 258:4599–4605; 1983.

    PubMed  CAS  Google Scholar 

  39. Wangh, L. J.; Schneider, W. Thyroid hormones are corequisites for estradiol-17β induction ofXenopus vitellogenin synthesis and secretion. Dev. Biol. 89:287–293; 1982.

    Article  PubMed  CAS  Google Scholar 

  40. Wangh, L. J.; Knowland, J. Synthesis of vitellogenin in cultures of male and female frog liver regulated by estradiol treatment in vitro. Proc. Natl. Acad. Sci. USA 72:3172–3175; 1975.

    Article  PubMed  CAS  Google Scholar 

  41. Westley, B.; Knowland, J. An estrogen receptor fromXenopus liver possibly connected with vitellogenin synthesis. Cell 15:367–374; 1978.

    Article  PubMed  CAS  Google Scholar 

  42. Wiklund, J. A.; Gorski, J. Genetic differences in estrogen-induced deoxyribonucleic acid synthesis in the rat pituitary. Endocrinology 111:1140–1149; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by National Science Foundation grants PCM 77-21578 and PCM 79-23483 and National Institutes of Health grant 1R01 AM 31695-01. B. S. A. was a U. S. Public Health Service Predoctoral Trainee (GM07122) and was supported by a grant from the American Liver Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aprison, B.S., Martin-Morris, L., Spolski, R.J. et al. Estrogen-dependent DNA synthesis in cultures ofxenopus liver parenchymal cells. In Vitro Cell Dev Biol 22, 457–464 (1986). https://doi.org/10.1007/BF02623446

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623446

Key words

Navigation