Skip to main content
Log in

Organic and inogranic lead inhibit neurite growth in vertebrate and invertebrate neurons in culture

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Neurons from brains of chick embryos and pond snails (Lymnaea stagnalis) were cultured for 3 to 4 d in the presence of no toxins, inorganic lead (PbCl2), or organic lead (trielthyl lead chloride). In chick neurons, inorganic lead reduced the percentage of cells that grew neurites (IC50=270μM total lead, approximately 70 nM free Pb2+) but did not reduce the number of neurites per cell or the mean neurite length. Triethyl lead reduced the percentage of cells that grew neuites (IC50=0.24 μM) and the mean neurite length (extrapolated IC50=3.6 μM) but did not reduce the number of neurites per cell. InLymnaea neurons, inorganic lead reduced the percentage of cells that grew neurites (IC50=13 μM total lead; approximately 10 nM free Pb2+). Triethyl lead reduced the percentage of cells that grew neurites (IC50=0.4 μM) and exerted significant toxicity at 0.2 μM. The two forms of lead affected neurite growth in qualitatively different ways, which suggests that their mechansms of action are different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aletta, J. M.; Greene, L. A. Growth cone configuration and advance: a time-lapse study using video-enhanced differential interference contrast microscopy. J. Neurosci. 8:1425–1435; 1988.

    PubMed  CAS  Google Scholar 

  • Alfano, D. P.; Petit, T. L. Neonatal lead exposure alters the dendritic development of hippocampal dentate granule cells. Exp. Neurol. 75:275–288; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Alfano, D. P.; LeBoutillier, J. C.; Petit, T. L. Hippocampal mossy fiber pathway development in normal and postnatally lead-exposed rats. Exp. Neurol. 75:308–319; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Anglister, L.; Farber, I. C.; Shahar, A., et al. Localization of voltage-sensitive calcium channels along developing neurites: their possible role in regulating neurite elongation. Dev. Biol. 94:351–365; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Atchison, W. D.; Narahashi, T. Mechanisms of action of lead on neuromuscular junctions. Neurotoxicology 5:267–282; 1984.

    PubMed  CAS  Google Scholar 

  • Audesirk, G. Effects ofin vitro andin vivo, lead exposure on voltage-dependent calcium channels in central neurons ofLymnaea stagnalis. Neurotoxicology 8:579–592; 1987.

    PubMed  CAS  Google Scholar 

  • Audesirk, G.; Nelson, G.; Shugarts, D., et al. Inhibition of neurite growth by organic and inorganic lead. Soc. Neurosci. Abstr. 14:1265; 1988.

    Google Scholar 

  • Buesselberg, D.; Evans, M. L.; Carpenter, D. O. The effect of lead on the voltage activated calcium channel ofAplysia neurons. Soc. Neurosci. Abstr. 14:1081; 1988.

    Google Scholar 

  • Coates, P. W. Quantitation and morphological characterization of rapid axon and dendritic growth from single cerebral hemispheric neurons in hydrated collagen lattice culture. Dev. Brain Res. 25:11–20; 1986.

    Article  Google Scholar 

  • Cookman, G. R.; Hemmens, S. E.; Keane, G. J., et al. Chronic low level lead exposure precociously induces rat glial development in vitro and in vivo. Neurosci. Lett. 86:33–37; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, G. P.; Steinberg, D. Effects of cadmium and lead on adrenergic neuromuscular transmission in the rabbit. Am. J. Physiol. 232:C128-C131; 1977.

    PubMed  CAS  Google Scholar 

  • Cremer, J. E. Possible mechanisms for the selective neurotoxicity. In: Grandjean, P.; Grandjean, E. C. eds. Biological effects of organolead compounds. Boca Raton, FL: CRC Press: 1984:207–218.

    Google Scholar 

  • Davis, J. M.; Svendsgaard, D. J. Dead and child development. Nature 329:297–300; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, K. N. Krafft, K. M.; Bornschein, R. L., et al. Low-level fetal lead exposure effect on neurobehavioral developement in early infancy. Pediatrics 80:721–730; 1987.

    PubMed  CAS  Google Scholar 

  • Faulstich, H.; Stournaras, C.; Doenges, K H., et al. The molecular mechanism of interaction of Et3Pb+ with tubulin. FEBS Lett. 174:128–131; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Ferris, N. J.; Cragg, B. G. Orgaic lead and histological parameters of brain development. Acta Neuropathol. 63:306–312; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Gotti, C.; Cabrini, D.; Sher, E., et al. Effects of long-termin vitro exposure to aluminum, cadmium or lead on differentiation and cholinergic receptor expression in a human neuroblastoma cell line. Cell Biol. Toxicol. 3:431–440; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Grundt, I. K.; Ammitzboll, T.; Clausen, J. Triethyl lead treatment of cultured brain cells. Neurochem. Res. 6:193–201; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, E. H.; Ruzicka, J. Selectrode—the universal solid-state electrode. Part VIII. The solid-state lead (II) selectrode in lead (II) buffers and potentiometric titrations. Anal. Chem. Acta 72:365–373; 1974.

    Article  CAS  Google Scholar 

  • Hsu, L.; Jeng, A. Y.; Chen, K. Y. Induction of neurite outgrowth from chick embronic anglia explants by activators of protein kinase C. Neurosci. Lett. 99:257–262; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Kater, S. B.; Mattson, M. P.; Cohan, C., et al. Calcium regulation of the neuronal growth cone. Trends Neurosci. 11:315–321; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen, R. A.; Komulainen, H.; Taipale, H. T. Chloridedependent uncoupling of oxidative phosphorylation by triethyllead and triethyltin increases cytosolic free calcium in guinea pig cerebral cortical synaptosomes. J. Neurochem. 51:1617–1625; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Kiraly, E.; Jones, D. G. Dendritic spine changes in rat hippocampal pyramidal cells after postnatal lead treatment: a Golgi study. Exp. Neurol. 77:236–239; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Kivalo, P.; Virtanen, R.; Wickstrom, K. et al. An evaluation of some commercial lead(II)-selective electrodes. Anal. Chim. Acta 87:401–409; 1976.

    Article  CAS  Google Scholar 

  • Kober, T. E.; Cooper, G. P. Lead competitively inhibits calciumdependent synaptic transmission in the bullfrog sympathetic ganglion. Nature 262:704–705; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Kostial, K.; Vouk, V. B. Lead ions and synaptic transmission in the superior cervical ganglion of the cat. Br. J. Pharmacol. 12:212–219; 1957.

    Google Scholar 

  • Lefauconnier, J. M.; Hauw, J. J.; Bernard, G. Regressive or lethal lead encephalopathy in the suckling rat: correlation of lead levels and morphological findings. J. Neuropath. Exp. Neurol. 42:177–190; 1983.

    PubMed  CAS  Google Scholar 

  • Letourneau, P. C.; Shattuck, T. A.; Ressler, A. H. “Pull” and “push” in neurite elongation: observations of the effects of different concentrations of cytochalasin B and taxol. Cell Motil. Cytoskeleton 8:193–209; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Lomme, M.; Ferguson, C.; Shugarts, D., et al. L-type calcium channels may regulate neurite growth in chick embryo brain neurons. Soc. Neurosci. Abstr. 14:1128; 1988.

    Google Scholar 

  • Louis-Ferdinand, R. T.; Brown, D. R.; Fiddler, S. F., et al. Morphometric and enzymatic effects of neonatal lead exposure in the rat brain. Toxicol Appl. Pharmacol. 43:351–360; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Manalis, R. S.; Cooper, G. P. Presynaptic and postynaptic effects of lead at the frog neuromuscular junction. Nature 243:354–356; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Manalis, R. S.; Cooper, G. P.; Pomeroy, S. L. Effects of lead on neuromuscular transmission in the frog. Brain Res. 294:95–109; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Markovac, J.; Goldstein, G. W. Picomolar concentrations of lead stimulate brain protein kinase C. Nature 334:71–73; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P.; Dou, P.; Kater, S. B. Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosci. 8:2087–2100; 1988.

    PubMed  CAS  Google Scholar 

  • Mattson, M. P.; Kater, S. B. Calcium regulation of neurite elongation and growth cone motility. J. Neurosci. 7:4034–4043; 1987.

    PubMed  CAS  Google Scholar 

  • Means, A. R.; Lagace, L.; Guerriero, V., Jr., et al. Calmodulin as a mediator of hormone action and cell regulation. J. Cell. Biochem. 20:317–330; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Nachshen, D. A. Selectivity of the Ca binding site in synaptosome Ca channels. Inhibition of Ca infllux by multivalent metal ions. J. Gen. Physiol. 83:941–967; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Needleman, H. L. Lead at low dose and the behavior of children. Acta Psychiatr. Scand. 67(Suppl)303:26–37; 1983.

    Google Scholar 

  • Needleman, H. L. Low level exposure in the fetus and young child. Neurotoxicology 8:389–394; 1987.

    PubMed  CAS  Google Scholar 

  • Nicklowitz, W. J. Ultrastructural effects of acute treaethyl lead poisoning on nerve cells of the rabbit brain. Environ. Res. 8:17–36; 1974.

    Article  Google Scholar 

  • Petit, T. L.; LeBoutillier, J. C. Effects of lead exposure during development on neocortical dendritic and synaptic structure. Exp. Neurol. 64:482–492; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Pickett, J. B.; Bornstein, J. C. Some effects of lead at mammalian neuromuscular junction. Am. J. Physiol. 246:C271-C276; 1984.

    PubMed  CAS  Google Scholar 

  • Pocock, G.; Simons, T. J. B. Effects of lead ions on events associated with exocytosis in isolated bovine adrenal medullary cells. J. Neurochem. 48:376–382; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Pounds, J. G.; Wright, R.; Morrison, D.; et al. Effect of lead on calcium homeostasis in the isolated rat hepatocyte. Toxicol. Appl. Pharmacol. 63:389–401; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Press, M. F. Lead encephalopathy in nonata Long-Evans rats: morphological studies. J. Neuropath. Exp. Neurol. 34:169–193; 1977.

    Article  Google Scholar 

  • Roderer, G.; Doenges, K. H. Influence of trimethyl lead and inorganic lead on thein vitro assembly of micortubles from mammalian brain. Neurotoxicology 4:171–180; 1983.

    PubMed  CAS  Google Scholar 

  • Schanne, F. A. X.; Dowd, T. L.; Gupta, R. K., et al. Measurement of intracellular calcium ion concentrations in NG108-15 cells by fluorine-19 nuclear magnetic resonance spectroscopy: a model for the study of lead neurotoxicity. Soc. Neurosci. Abstr. 14:1264; 1988.

    Google Scholar 

  • Shellenberger, M. K. Effects of early lead exposure on neurotransmitter systems in the brain: A reriew. Neurotoxicology 5:177–212; 1984.

    PubMed  CAS  Google Scholar 

  • Silbergeld, E. Behavioral teratology of lead. In: Yanai, J., ed., Neurobehavioral teratology. New York: Elsevier; 1984:433–445.

    Google Scholar 

  • Simons, T. J. B. Influence of lead ions on cation permeability in human red cell ghosts. J. Membr. Biol. 84:61–71; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Simons, T. J. B.; Pocock, G. Lead enters bovine adrenal medullary cells through calcium channels. J. Neurochem. 48:383–389; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Spence, I.; Drew, C.; Johnston, G. A. R., et al. Acute effects of lead at central synapses in vitro. Brain Res. 333:103–109; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Suarez-Isla, B. A.; Pelto, D. J.; Thompson, J. M., et al. Blockers of calcium permeability inhibit neurite extension and formation of neuromuscular synapses in cell culture. Dev. Brain Res. 14: 263–270; 1984.

    Article  CAS  Google Scholar 

  • Suzuki, T.; Fujii, T.; Tanaka, R. Calcium/calmodulin-dependent inhibition of microtubule assembly by brain synaptic junction. Neurochem. Res. 11:543–555; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, T. J.; McLamb, R. L.; Bondy, S. C., et al. Triethyl and trimethyl lead: effects on behavior, CNS morphology and concentrations of lead in the blood and brain of rat. Neurotoxicology 7:21–34; 1986.

    PubMed  CAS  Google Scholar 

  • Windebank, A. J. Specific inhibition of myelination by leadin vitro; comparison with arsenic, thallium, and mercury. Exp. Neurol. 94:203–212; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Wong R. G.; Hadley, R. D.; Kater, S. B., et al. Neurite outgrowth in molluscan organ and cell cultures: the role of conditioning factor(s). J. Neurosci. 1: 1008–1021; 1981.

    PubMed  CAS  Google Scholar 

  • Yamamoto, H.; Fukunaga, K.; Tanaka, E., et al. Ca2+- and calmodulin-dependent phosphorylation of microtubule-associated protein 2 and τ factor, and inhibition of microtubule assembly. J. Neurochem. 41:1119–1125; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, H.-P.; Doenges, K. H.; Roderer, G. Interaction of triethyl lead chloride with microtubules in vitro and in mammalian cells. Exp. Cell Res. 156: 140–152; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, H.-P.; Plagens, U.; Traub, P. Influence of triethyl lead on neurofilamentsin vivo andin vitro. Neurotoxicology 8:569–578; 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

These experiments were supported by grants from the Environmental Protection Agency, Washington, DC, and the National Institutes of Environmental Health Science, Research Triangle Park, NC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audesirk, G., Shugarts, D., Nelson, G. et al. Organic and inogranic lead inhibit neurite growth in vertebrate and invertebrate neurons in culture. In Vitro Cell Dev Biol 25, 1121–1128 (1989). https://doi.org/10.1007/BF02621263

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02621263

Key words

Navigation