Skip to main content
Log in

Increased viability and differentiation of normal and dystrophic striated muscle in vitro

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Primary cultures of muscle from normal (line 412) and dystrophic (line 413) chick embryos were exposed to corticosterone-21-acetate (C-21-A) or sodium ibuprofen (Motrin) for 28 d after myotube formation. Ibuprofen (0.5 to 500 μg/ml) or C-21-A (0.4 to 40 μg/ml)-treated cultures were fixed and assessed semiquantitatively using phase microscopy. On this basis, ibuprofen (50 μg/ml) and C-21-A (40 μg/ml) seemed to be effective in maintaining both normal and dystrophic muscle cultures. Using ibuprofen and C-21-A at these concentrations, experiments were repeated and analyzed quantitatively. Ibuprofen maintained culture viability (up to 68% more myotubes than untreated controls) but had no significant effect on the number of striated cells. C-21-A effectively maintained culture viability (up to 73% increase) and strongly promoted the formation of striated cells in these cultures (up to a sixfold increase). Both normal and dystrophic cultures were affected similarly by these agents, but the dystrophic cultures showed more consistent if not more extensive improvements in the parameters examined here. Thus, it seems that ibuprofen and C-21-A may affect both normal and dystrophic muscle directly to maintain survival and even promote differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askanas, V.; Hee, D. Histochemical and tissue culture studies of dystrophic and experimentally denervated animal muscle. J. Neuropath. Exp. Neurol. 33:541–551; 1974.

    PubMed  CAS  Google Scholar 

  2. Askanas, V.; Shafiq, S. A.; Milhorat, A. T. Normal and dystrophic chicken muscle at successive stages in tissue culture. Arch. Neurol. 24:259–265; 1971.

    PubMed  CAS  Google Scholar 

  3. Beck, J. C.; McGarry, E. E. Physiological importance of cortisol. Br. Med. Bull. 18:134–140; 1962.

    PubMed  CAS  Google Scholar 

  4. Bulien, D.; Hughes, B. The effect of indomethacin on serum and skeletal muscle enzyme activities of dystrophic hamsters. Biochem. Pharmacol. 15:981–983; 1976.

    Article  Google Scholar 

  5. Cardinet, G. H.; Freedland, R. A.; Tyler, W. S., et al. Morphologic, histochemical, and quantitative enzyme study of hereditary avian muscular dystrophy. Am J. Vet. Res. 33:1671–1684; 1972.

    PubMed  CAS  Google Scholar 

  6. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104:255–262; 1977.

    Article  PubMed  CAS  Google Scholar 

  7. Drachman, D. B.; Toyka, K. V.; Myer, E. Prednisone in Duchenne muscular dystrophy. Lancet 2:1409–1412; 1974.

    Article  PubMed  CAS  Google Scholar 

  8. Entrikin, R. K.; Patterson, G. T.; Wilson, B. W. Drug evaluation in muscular dystrophy of the chicken. Muscle Nerve 5:321–327; 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Entrikin, R. K.; Patterson, C. T.; Wilson, B. W. Drugs in muscular dystrophy of the chicken: corticosterone-21-acetate. Muscle Nerve 7:130–136; 1984.

    Article  PubMed  CAS  Google Scholar 

  10. Entrikin, R. K.; Swanson, K. L.; Weidoff, P. M., et al. Avian muscular dystrophy—functional and biochemical improvement with diphenylhydantoin. Science 195:873–875; 1977.

    Article  PubMed  CAS  Google Scholar 

  11. Gryglewski, R. J. Effects of anti-inflammatory steroids on the arachidonic acid cascade. In: Weissman, G.; Paoletti, R.; Samuelsson, B., eds. Advances in inflammation research, vol 1. New York: Raven Press; 1979:505–521.

    Google Scholar 

  12. Hudecki, M. S.; Pollina, C. M.; Heffner, R. R., et al. Enhanced functional ability in drug-treated dystrophic chickens: Trial results with indomethacin, diphenylhydantoin, and prednisolone. Exp. Neurol. 73:173–185; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Julian, J. A.; Chytil, F. A two-step mechanism for the regulation of tryptophan pyrrolase. Biochem. Biophys. Res. Comm. 34:734–739; 1969.

    Article  Google Scholar 

  14. Karpati, G.; Carpenter, S.; Melmed, C. et al. Experimental ischemic myopathy. J. Neurol. Sci. 23:129–161; 1974.

    Article  PubMed  CAS  Google Scholar 

  15. Kobayashi, T.; Tsukagoshi, H.; Shimizu, Y.. Trophic effects of sympathetic ganglia on normal and dystrophic chicken skeletal muscles in tissue culture. Exp. Neurol. 77:241–253; 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Konigsberg, I. R. Skeletal myoblasts in culture. Methods Enzymol. 58:511–527; 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Lewis, D. A.; Symons, A. M.; Ancill, R. J. The stabilization-lysis action of anti-inflammatory steroids on lysosomes. J. Pharm. Pharmac. 22:902–908; 1970.

    CAS  Google Scholar 

  18. Lucy, J. A. Lysosomal membranes. In: Dingle, J. T.; Fell, H. B., eds. Lysosomes in biology and pathology, vol 2. Amsterdam: North-Holland; 1969;313–341.

    Google Scholar 

  19. Mendell, J. R.; Sahenk, Z.; Silverman, L. M. Relationship of biogenic amines to Duchenne muscular dystrophy. In: Rowland, L. P., ed. Pathogenesis of human muscular dystrophies. Amsterdam: Elsevier North Holland 1976:678–684.

    Google Scholar 

  20. Mokri, B.; Engel, A. G. Duchenne dystrophy: Electron microscope findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurol. 25:1111–1120; 1975.

    CAS  Google Scholar 

  21. Owens, K. Biochemical studies of dystrophy in the young chicken: Lysosomal and sarcolemmal enzymes. Ann. NY Acad. Sci. 317:247–262; 1979.

    PubMed  CAS  Google Scholar 

  22. Rodemann, H. P.; Goldberg, A. L. Arachidonic acid, prostaglandin E2 and F2 influence rates of protein turnover in skeletal and cardiac muscle. J. Biol. Chem. 257:1632–1638; 1982.

    PubMed  CAS  Google Scholar 

  23. Rodemann, H. P.; Waxman, L.; Goldberg, A. L. The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and and does not require the calcium-activated protease. J. Biol. Chem. 257:8716–8723; 1982.

    PubMed  CAS  Google Scholar 

  24. Santidrian, S.; Marchon, P.; Zhao, X. H., et al. Effect of corticosterone on rate of myofibrillar protein breakdown in adult male rats. Growth 45:342–356; 1981.

    PubMed  CAS  Google Scholar 

  25. Siegel, I. M.; Miller, J. E.; Ray, R. D. Failure of corticosteroid in the treatment of Duchenne (pseudo-hypertrophic) muscular dystrophy. Illinois Med. J. 145:32–36; 1974.

    CAS  Google Scholar 

  26. Sugita, H.; Ishiura, S.; Suzuki, K., et al. Ca-activated neutral protease and its inhibitors: in vitro effect on intact myofibrils. Muscle Nerve 3:335–339; 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Tomkins, G. M.; Gelehrter, T. D.; Granner, D., et al. Control of specific gene expression in higher organisms. Science 166:1474–1477; 1969.

    Article  PubMed  CAS  Google Scholar 

  28. West, W. T.; Meier, H.; Hoag, W. G. Hereditary mouse muscular dystrophy with particular emphasis on pathogenesis and attempts at therapy. Ann. NY Acad. Sci. 138:4–18; 1966.

    Article  PubMed  CAS  Google Scholar 

  29. Wilson, D. R.; Honrath, U.; Sonnenberg, H. Furosemide action on collecting ducts: effect of prostaglandin synthesis inhibition. Am. J. Physiol. 244:F666–673; 1983.

    PubMed  CAS  Google Scholar 

  30. Witkowski, J. A., Diseased muscle cells in culture. Biol. Rev. 52:431–476; 1977.

    PubMed  CAS  Google Scholar 

  31. Wolitzky, B. A.; Segal, H. L.; Hudecki, M. S. Similarities in protein synthesis and degradation in normal and dystrophic muscle cultures. Exp. Cell Res. 137:295–299; 1972.

    Article  Google Scholar 

  32. Young, R. B.; McConnell, D. G.; Suelter, C. H., et al., Normal and dystrophic embryonic chicken pectoralis muscle cultures: I. Cell differentiation, protein synthesis, and enzyme levels. Muscle Nerve 4:117–124; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, R.J., Hyun, J. Increased viability and differentiation of normal and dystrophic striated muscle in vitro. In Vitro Cell Dev Biol 22, 535–541 (1986). https://doi.org/10.1007/BF02621140

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02621140

Key words

Navigation