Skip to main content
Log in

The growth-promoting effect of human whole blood serum on cultured human aortic smooth muscle cells is a constant serum donor-dependent property

  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

We studied the variation in the mitogenicity of the sera derived from any particular subject at different time points. Two sets of sera were taken at an interval of 3 wk from 12 healthy male conscripts, and the samples were tested with regard to their ability to support proliferation of cultured human aortic smooth muscle cells (HSMC). Sera from 12 individual showed markedly different growth-stimulating effects. On the other hand, sera from any particular individual taken at different time points gave constantly the same result. This was evident when the sera from the two time points were tested fresh in separate experiments and when they were tested together in one experiment after storage of 4 to 5 mo. The growth-promoting effects of the sera did not correlate significantly with the concentration of certain measurable serum factors which are known to be mitogenic for arterial smooth muscle cells (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, growth hormone, insulin, or insulike growth factor-I). Our results indicate that the growth-promoting effect of human serum on cultured HSMC is a constant serum donor-dependent property. This implies that it is possible to make reliable comparisons between the growth-promoting effects of the sera derived from different subjects, and to measure the effects of treatments, e. g. medical or dietary, on the mitogenicity of the sera from any given individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Augustyn, J. M.; Fritz, K. E.; Daoud, A. S., et al. Effect of lipoprotein on in vitro synthesis of DNA in aortic tissue. Atherosclerosis 27:179–188; 1977.

    Article  CAS  Google Scholar 

  2. Berk, B. C.; Brock, T. A.; Webb, R. C., et al. Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. J. Clin. Invest. 75:1083–1086; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Buchwald, M. Use of cultured cells for biochemical analysis. Clin. Biochem. 17:143–150; 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell. Res. 104:255–262; 1977.

    Article  PubMed  CAS  Google Scholar 

  5. Fischer-Dzoga, K.; Wissler, R. W. Stimulation in stationary primary cultures of monkey aortic smooth muscle cells. Part 2. Effects of varying concentrations of hyperlipemic serum and lipoproteins of varying fat origins. Atherosclerosis 24:515–525; 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Friedewald, W. T.; Levy, R. I.; Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18:499–502; 1972.

    PubMed  CAS  Google Scholar 

  7. Gospodarowicz, D.; Hirabayashi, K.; Giguere, L., et al. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture. J. Cell. Biol. 89:568–578; 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Hamet, P.; Sugimoto, H.; Umeda, F., et al. Platelets and vascular smooth muscle: Abnormalities of phosphodiesterase, aggregation and cell growth in experimental and human diabetes. Metabolism 32 (suppl. 1):124–130; 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Jalkanen, M.; Larjava, H.; Turakainen, H., et al. Improved application of the diphenylamine reaction for the determination of DNA. J. Biochem. Biophys. Meth. 3:195–199; 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Järveläinen, H.; Halme, T.; Lehtonen, A., et al. Serum from type IIA hyperlipoproteinemic patients does not stimulate proliferation of and collagen synthesis in human fetal aortic smooth muscle cells in culture. Atherosclerosis 56:199–211; 1985.

    Article  PubMed  Google Scholar 

  11. Koschinsky, T.; Bunting, C. E.; Schwippert, B., et al. Studies on inherited and acquired metabolic disorders in cultured arterial smooth muscle cells and fibroblasts. Int. J. Obsity 1 (suppl. 6):91–104; 1982.

    Google Scholar 

  12. Ledet, T. Growth hormone stimulating the growth of arterial medial cells in vitro. Absence of effect of insulin. Diabetes 25:1011–1017; 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Nilsson, J.; Ksiazek, T.; Heldin, C-H, et al. Demonstration of stimulatory effects of platelet-derived growth factor on cultivated rat arterial smooth muscle cells. Exp. Cell Res. 147:231–237; 1983.

    Article  Google Scholar 

  14. Olashaw, N.; Harrington, M.; Pledger, W. J. The regulation of the cell cycle by multiple growth factors. Cell Biol. Int Rep. 7:489–491; 1983.

    Article  CAS  Google Scholar 

  15. Pfeifle, B.; Ditschuneit, H. The effect of insulin and insulin-like growth factors on cell proliferation of human smooth muscle cells. Artery 8:336–341; 1980.

    PubMed  CAS  Google Scholar 

  16. Pfeifle, B.; Ditschuneit, H. Effect of insulin on growth of cultured human arterial smooth muscle cells. Diabetologia 20:155–158; 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Pledger, W. J.; Stiles, C. D.; Antoniades, H. N., et al. Induction of DNA synthesis in BALB/c 3T3 cells by serum components: Reevaluation of the commitment process. Proc. Natl. Acad. Sci. USA 74:4481–4485; 1977.

    Article  PubMed  CAS  Google Scholar 

  18. Ross, R.; Glomset, J.; Kariya, B., et al. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc. Natl. Acad. USA 71:1207–1210; 1974.

    Article  CAS  Google Scholar 

  19. Ross, R.; Glomset, J.; Kariya, B., et al. Role of platelet factors in the growth of cells in culture. Natl. Cancer Inst. Monogr. 48:103–108; 1978.

    PubMed  Google Scholar 

  20. Rønning, Ø. W.; Pettersen, E. O. Effect of different growth factors on cell cycle traverse and protein growth of human cells in culture. Exp. Cell Res. 157:29–40; 1985.

    Article  PubMed  Google Scholar 

  21. Rönnemaa, T.; Doherty, N. S. Effect of serum and liver extracts from hypercholesterolemic rats on the synthesis of collagen by isolated aortas and cultured smooth muscle cells. Atherosclerosis 26:261–272; 1977.

    Article  PubMed  Google Scholar 

  22. Schwartz, S. M.; Gajdusek, C. M. Growth factors and the vessel wall. Prog. Hemost. Thromb. 6:85–112; 1982.

    PubMed  CAS  Google Scholar 

  23. Stiles, C. D.; Capone, G. T.; Scher, C. D., et al. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 76:1279–1283; 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Talha, S.; Harel, E. Early stimulation of ATP turnover induced by growth factors. Synergitic effect of EGF and insulin and correlation with DNA synthesis. Exp. Cell Res. 158:311–320; 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Viikari, J. Precipitation of plasma lipoproteins by PEG-6000 and its evaluation with electrophoresis and ultracentrifugation. Scand. J. Clin. Lab. Invest. 36:265–268; 1976.

    CAS  Google Scholar 

  26. Williams, L. T.; Tremble, P.; Antoniades, H. N. Platelet-derived growth factor binds specifically to receptors on vascular smooth muscle cells and the binding becomes nondissosiable. Proc. Natl. Acad. Sci. USA 79:5867–5870; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Järveläinen, H., Perltonen, J. & Rönnemaa, T. The growth-promoting effect of human whole blood serum on cultured human aortic smooth muscle cells is a constant serum donor-dependent property. In Vitro Cell Dev Biol 22, 515–518 (1986). https://doi.org/10.1007/BF02621136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02621136

Key words

Navigation