Skip to main content
Log in

Inhibition of attachment and growth of tumor cells on collagen by a monoclonal antibody

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript
  • 3 Altmetric

Summary

A murine monoclonal antibody, VM-1, which binds to basal cells of normal human epidermis, reduces the ability of human squamous cell carcinoma cells (SCL-1) derived from the skin to attach and spread on collagen by about 50% and causes cell rounding. Similar effects have been previously shown using normal human keratinocytes. The attachment of cell lines derived from human lung squamous cell carcinomas (SW1271 and SW900), melanoma A375, glioblastoma 126, and fibrosarcoma HT1080 is also inhibited by this antibody. VM-1 antibody does not bind to normal human fibroblasts, benign nevus cells, or the human B-cell-derived line 8866. VM-1 antibody inhibits the growth of SCL-1 cells in vitro as measured by cell numbers and [3H]thymidine ([3H]TdR) incorporation. It is not cytolytic in the presence of complement as measured by51Cr release. Repeated treatment of SCL-1 cells with VM-1 antibody significantly reduces the proportion of SCL-1 cells that attach to collagen. In addition, after treatment of SCL-1 cells with VM-1 antibody, several proteins can no longer be demonstrated by gel electrophoresis of the cell-free supernatant. The VM-1 antibody effect on attachment and spreading is partially reversed by pretreatment of the collagen surface with laminin and fibronectin, but not with the carbohydrates chondroitin-6-sulfate or hyaluronic acid or with the protein lysozyme. By fluorescence staining, the antigen recognized by VM-1 antibody is membrane-bound and Triton X-100 extractable. The VM-1 antigen is excluded from Bio-Sil TSK-400 and sediments at about 10.5 S. It has a covalent molecular weight on the order of 106. Proteinase K digestion produces VM-1 antibody reactive fragments, assumed to be polysaccharides, with a polydisperse molecular weight distribution in the range 5000 to 30 000. The VM-1 antigen is partially lost from solution on boiling and is no longer detectable in the aqueous or organic phase after chloroform-methanol extraction. The properties of the VM-1 antigen are consistent with those of a proteoglycan involved in attachment and spreading of kerationcytes and certain tumor cells on collagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, I.; Mautner, V. M.; Lanza, R., et al. Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformed-sensitive surface protein. Cell 11:115–126; 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Boukamp, P.; Tilgen, W.; Dzarleva, R. T., et al. Phenotypic and genotypic characteristics of a cell line from a squamous cell carcinoma of human skin. JNCI 68:415–427; 1982.

    PubMed  CAS  Google Scholar 

  3. Chicouet, M.; Puri, E. C.; Turner, D. C. Fibronectin mediates attachment of chicken myoblasts to a gelatin-coated substratum. J. Biol. Chem. 254:5475–5482; 1979.

    Google Scholar 

  4. Chowdhury, T. K. Effects of concanavalin A on cellular dynamics and membrane transport. Adv. Exp. Med. Biol. 55:187–205; 1974.

    Google Scholar 

  5. Eisen, H. N. Cell surface antigens: Transfusion, transplantation and tumor immunity. In: Davis, B. D.; Dulbecco, R.; Eisen, N. H., eds. Microbiology, Harper & Row; 1980:524–547.

  6. Dippoid, W. G.; Knuth, A.; Buschenfelde, K. H. M. Inhibition of human melanoma cell growth in vitro by monoclonal anti-GD3-ganglioside antibody. Cancer Res 44:806–810; 1984.

    Google Scholar 

  7. Dodson, J. W.; Hay, E. D. Secretion of collagen by corneal epithelium. Effect of the underlying substratum on secretion and polymerization of epithelial products. J. Exp. Zool. 189:51–72; 1974.

    Article  PubMed  CAS  Google Scholar 

  8. Fantone, J. C.; Elgas, L. J.; Weinberger, L., et al. Modulation of tumor cell adherence by prostaglandins. Oncology 40:421–426; 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Farb, R. M.; Dykes, R.; Lazarus, G. S. Anti-epidermal cell surface pemphighus antibody detaches viable epidermal cells from culture plates by activation of proteases. Proc. Natl. Acad. Sci. USA 75:459–463; 1978.

    Article  PubMed  CAS  Google Scholar 

  10. Foidart, J. M.; Berman, J. J.; Paglia, L., et al. Synthesis of fibronectin, laminin and several collagens by a liver-derived epithelial cell line. Lab. Invest. 42:525–532; 1980.

    PubMed  CAS  Google Scholar 

  11. Gey, G. O.; Svatelis, M.; Foard, M., et al. Long-term growth of chicken fibroblasts on a collagen substrate. Exp. Cell. Res. 84:63–71; 1974.

    Article  PubMed  CAS  Google Scholar 

  12. Harrist, J. J.; Mihm, M. C., Jr. Cutaneous immunopathology. Human Pathol. 10:626; 1979.

    Google Scholar 

  13. Hart, I. R.; Raz, A.; Fidler, I. J. Effect of cytoskeleton disrupting agents on the metastatic behavior of melanoma cells. JNCI 64:891–900; 1980.

    PubMed  CAS  Google Scholar 

  14. Hawkes, R.; Niday, E.; Gordon, J. A dot-immunoblotting assay for monoclonal and other antibodies. Analyt. Biochem. 119:142–147; 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Huff, J. C.; Weston, W. L.; Wanda, K. D. Enhancement of specific immunofluorescence findings with use of paraphenylene diamine mounting buffer. J. Invest. Dermatol. 78:499–450; 1982.

    Article  Google Scholar 

  16. Hynes, R. O.; Yamada, K. M. Fibronectins: Multi-functional modular glycoproteins. J. Cell. Biol. 95:369–377; 1982.

    Article  PubMed  CAS  Google Scholar 

  17. Kleinman, H. K.; Kelbe, R. J.; Martin, G. R. Role of collagenous matrices in the adhesion and growth of cells. J. Cell Biol. 88:473–485; 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Laemmli, V. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  19. Liotta, L. A.; Rao, N. C.; Terranova, V. P., et al. Tumor cell attachment and degradation of basement membranes. In: Nicholson, G. L., ed. Cancer invasion and metastasis: biologic and therapeutic aspects. New York: Raven Press; 1984:169–176.

    Google Scholar 

  20. Liu, S-C.; Karasek, M. Isolation and growth of adult human epidermal keratinocytes in cell culture. J. Invest. Dermatol. 71:157–162; 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Low, B. B.; Chaponnier, C.; Gabbiani, G. Organization of actin in epithelial cells during regenerative and neoplastic conditions: Correlations of morphologic, immunofluorescent and biochemical findings. Lab. Invest. 44:359–367; 1981.

    PubMed  CAS  Google Scholar 

  22. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L., et al. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265; 1951.

    PubMed  CAS  Google Scholar 

  23. Mahrle, G. Cell surface interactions and cell membranes in psoriasis. In: Farber, Psoriasis, proceedings of the third international symposium. New York, NY: Grune and Stretton; 1982:43–52.

    Google Scholar 

  24. Mareel, M. M. K.; deBrabander, M. J. Effect of microtubule inhibitors on malignant invasion in vitro. JNCI 61:787–792; 1978.

    PubMed  CAS  Google Scholar 

  25. Morhenn, V. B.; Schreiber, A. B.; Soreiro, O., et al. A monoclonal antibody specific for proliferating skin squamous cells: Use in the diagnosis of cervical neoplasia. J. Clin. Invest. 76:1978–1983; 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Murray, J. C.; Liotta, L. A.; Rennard, S. I., et al. Collagen adhesion characterization of murine metastatic and non-metastatic tumor cells in vitro. Cancer Res. 40:347–351; 1980.

    PubMed  CAS  Google Scholar 

  27. Murray, J. C.; Stingl, G.; Kleinman, H. K., et al. Epidermal cells adhere preferentially to type IV (basement membrane) collagen. J. Cell Biol. 80:197–201; 1978.

    Article  Google Scholar 

  28. Nicholson, G. L.; Winkelhake, J. L. Organ specificity of blood-borne metastases as determined by cell adhesion. Nature 225:230–232; 1975.

    Article  Google Scholar 

  29. Oseroff, A. R.; Pfendt, E. A.; DiCicco, L. M., et al. A murine monoclonal antibody (VM-1) against human basal cells inhibits the growth of human keratinocytes in culture. J. Invest. Dermatol. 84:257–262; 1984.

    Article  Google Scholar 

  30. Peehl, D. M.; Ham, R. G. Clonal growth of human keratinocytes with small amounts of dialyzed serum. In Vitro 16(6):526–538; 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Rungger-Brandle, E.; Gabbiani, G. The role of cytoskeletal and cytocontractile elements in the pathologic process. Am. J. Pathol. 110:361–364; 1983.

    PubMed  CAS  Google Scholar 

  32. Van der Zeijst, B. A. M.; Bloemers, H. P. J. 4698 isokinetic glycerol and sucrose gradients for density gradient centrifugation. In: Fasman, G. D., ed. Handbook of biochemistry and molecular biology, physical and chemical data, vol. 1. Cleveland, OH: CRS Press; 1978:426–519.

    Google Scholar 

  33. Varani, J.; Lovett, E. J.; Elgabaly, S., et al. In vitro and in vivo adherence of tumor cell variants correlated with tumor formation. Am. J. Pathol. 101:345–352; 1980.

    PubMed  CAS  Google Scholar 

  34. Volk, T.; Geiger, B.; Raz, A. Motility and adhesive properties of high- and low-metastatic murine neoplastic cells. Cancer Res. 44:811–824; 1984.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by a grant from the Elsa U. Pardee Foundation, a Training Grant from the National Institutes of Health, Bethesda, MD, and the Psoriasis Research Institute. Part of this work has appeared as an abstract in Fed. Proc. 43:1929, Abst. #2994, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Cicco, L.M., Mansbridge, J.N. & Morhenn, V.B. Inhibition of attachment and growth of tumor cells on collagen by a monoclonal antibody. In Vitro Cell Dev Biol 23, 805–814 (1987). https://doi.org/10.1007/BF02620958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620958

Key words

Navigation