Skip to main content

Advertisement

Log in

Pathophysiology of trauma — multiple organ failure

Pathophysiologie des traumatischen Multi-Organversagens

  • Main Topics: Surgery On Injuries To Visceral Organs — Part I
  • Published:
Acta Chirurgica Austriaca Aims and scope Submit manuscript

Summary

Background: Multiple organ failure (MOF) is not a disease, but the result of a series of events that in some cases may lead to the death of patients in the intensive care unit.

Methods: This is a review of pathophysiologic alterations that may occur after trauma. In this respect emphasis will be placed on mechanisms and significance of trauma-related ischemia/reperfusion, activation of cellular/humoral systems, bacteria/endotoxin translocation, and related mediators that can cause or perpetuate the development of MOF.

Results: In general, the body’s response to trauma or stress is mediated by mediators derived by activation of humoral cascades, such as complement and coagulation systems and/or by a variety of cells, such as the monocytes/macrophages. Such a response, manifested as inflammation, should be beneficial to the host. From a certain threshold level of activation/inactivation, however, there might be an imbalance of the mediator system that could harm the host by leading to the development of MOF. Although the pathogenesis of MOF is most likely multifaceted, the cell’s oxygen status, adherence of neutrophils to the endothelium with subsequent transmigration, gut barrier failure leading to the translocation of bacteria/endotoxin, and an initially hyperinflammatory state followed by delayed immunosupression that predispose to infection have recently been considered as key events in this scenario.

Conclusions: The precise mechanisms, however, of the development of MOF have not been clearly understood. The relative importance of the cascades/mediators and their interrelationships remains to be defined.

Zusammenfassung

Grundlagen: Multiples Organversagen (MOV) ist keine Krankheit, sondern das Ergebnis einer Reihe von Ereignissen, die in manchen Intensivfällen zum Tode führen können.

Methodik: Die folgende Arbeit stellt einen Überblick über die möglichen pathophysiologischen Veränderungen nach einem Trauma dar. In diesem Zusammenhang werden die Mechanismen und Merkmale jener Vorgänge dargestellt, die während der Ischämie/Reperfusion, Aktivierung von humoralen/zellulären Kaskaden und Freisetzung von entsprechenden Mediatoren die Entwicklung des MOV verursachen und/oder perpetuieren.

Ergebnisse: Normalerweise wird die körperliche Antwort auf Trauma oder Streß durch Mediatoren bestimmt, welche sich durch die Aktivierung der humoralen Kaskaden, etwa der Komplement-und Gerinnungssystem, bzw. aus verschiedenen Zellen, z. B. Monozyten und Makrophagen, entwickeln. Diese Antwort, in Form einer Entzündung, sollte für den Organismus von Vorteil sein. Ab einer gewissen Schwelle der Aktivierung/Deaktivierung kann es jedoch zu einem Ungleichgewicht des Mediatorensystems kommen und folglich zur Entstehung des MOV. Obwohl die Pathogenese des MOV höchstwahrscheinlich vielseitig ist, werden in letzter Zeit als Schlüsselereignisse in diesem Szenario der Sauerstoffstatus der Zelle, die Anhaftung der Neutrophilen am Endothelium und ihre darauffolgende Transmigration, das Versagen der Viszeralschranken mit Translokation von Bakterien bzw. Endotoxinen, und ein anfangs hyperentzündlicher Zustand gefolgt von verspäteter Immunsuppression als Grundlage einer Prädisposition zur Infektion diskutiert.

Schlußfolgerungen: Die genauen Entstehungsmechanismen des MOV sind jedoch noch nicht geklärt. Die Aufklärung der vielfachen Wechselwirkungen mit ineinander übergreifenden Vorgängen bleibt noch offen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham E, Bursten S, Shenkar R, Allbee J, Tuder R, Woodson P, et al: Phosphatidic acid signialing mediates lung cytokine expression and lung inflammatory injury after hemorrhage in mice. J Exp Med 1995;181:569–575.

    Article  PubMed  CAS  Google Scholar 

  2. Albelda SM, Smith CW, Ward PA: Adhesion molecules and inflammatory injury. FASEB J 1994;8:504–512.

    PubMed  CAS  Google Scholar 

  3. Alexander JW, Ogle CK, Stinnett JD: A sequential, prospective analysis of immunologic abnormalities and infection following severe thermal injury. Ann Surg 1979;188:809–815.

    Article  Google Scholar 

  4. Anderson BO, Harken AH: Multiple organ failure: inflammatory priming and activation sequences promote autologous tissue injury. J Trauma 1990;30 (suppl): S44-S49.

    PubMed  CAS  Google Scholar 

  5. Ayala A, Knotts JB, Ertel W, Perrin MM, Morrison MH, Chaudry IH: Role of interleukin 6 and transforming growth factor-beta in the induction of depressed splenocyte responses following sepsis. Arch Surg 1993;128:89–94.

    PubMed  CAS  Google Scholar 

  6. Ayala A, Perrin MM, Meldrum DR, Ertel W, Chaudry IH: Hemorrhage induces an increase in serum TNF which is not associated with elevated levels of endotoxins. Cytokine 1990;2:170–174.

    Article  PubMed  CAS  Google Scholar 

  7. Ayala A, Wang P, Ba ZF, Perrin MM, Ertel W, Chaudry IH: Differential alterations in plasma IL-6 and TNF levels after trauma and hemorrhage. Am J Physiol 1991;260:R167-R171.

    PubMed  CAS  Google Scholar 

  8. Bahrami S, Redl H, Schlag G: Der Darm als Ursache von Sepsis und Multiorganversagen. Wien klin Wschr 1998;10 (Suppl 1):2–10.

    Google Scholar 

  9. Bahrami S, Redl H, Yao Y-M, Schlag G: Involvement of bacteria/endotoxin translocation in the development of multiple organ failure. Curr Top Microbiol Immunol 1996;216:239–258.

    Google Scholar 

  10. Bahrami S, Schlag G, Yao YM, Redl H: Significance of translocation/endotoxin in the development of systemic sepsis following trauma and/or hemorrhage. Prog Clin Biol Res 1995;392:197–208.

    PubMed  CAS  Google Scholar 

  11. Bahrami S, Strohmaier W, Gasser H, Peichl G, Fürst W, Fitzal F, et al: 2,4-diamoni-5,6,7,8-tetrahydro-6-(1-erythro-1, 2-dihydroxypropyl) pteridine (4-ABH4) reduces nitric oxide formation and improves survival rate in experimental endotoxin shock. Shock 1997;8 (suppl): 54.

    Google Scholar 

  12. Bahrami S, Yao Y-M, Leichtfried G, Redl H, Marzi I, Schlag G: Significance of TNF in hemorhage-related hemodynamic alterations, organ injury, and mortality in rats. Am. J Physiol. 1997;272:H2219-H2226.

    PubMed  CAS  Google Scholar 

  13. Bahrami S, Yao YM, Leichtfried G, Redl H, Schlag G, Di Padova FE: Monoclonal antibody to endotoxin attenuates hemorrhage-induced lung injury and mortality in rats. Crit. Care Med 1997;25:1030–1036.

    Article  PubMed  CAS  Google Scholar 

  14. Baker JW, Deitch EA, Li M, Berg RD, Specian RD: Hemorrhagic shock induces bacterial translocation from the gut. J Trauma 1988;28:896–906.

    Article  PubMed  CAS  Google Scholar 

  15. Battelli MG, Lorenzoni E, Stirpe F: Milk xanthine oxidase type D (dehydrogenase) and type O (oxidase): purification, interconversion and some properties. Biochem. J 1973;131:191–198.

    PubMed  CAS  Google Scholar 

  16. Baue AE, Multiple Organ Failure: Patient Care and Prevention. St. Louis, Mosby-Year Book, 1990.

    Google Scholar 

  17. Belzer FO, Southard JH: Principles of solid-organ preservation by cold storage. Transplantation 1988;45:673–676.

    Article  PubMed  CAS  Google Scholar 

  18. Bloom AL: Physiology of blood coagulation. Haemostasis 1990; 20 (suppl 1): 14–29.

    PubMed  CAS  Google Scholar 

  19. Boekstegers P, Weidenhöfer S, Zell R, Holler E, Kapsner T, Redl H, et al: Changes in skeletal muscle PO2 after administration of anti-TNF alpha-antibody in patients with severe sepsis: comparison to interleukin-6 serum levels, APACHE II, and elebute scores. Shock 1994;1:246–253.

    Article  PubMed  CAS  Google Scholar 

  20. Bone RC: Modulators of coagulation: a critical appraisal of their role in sepsis. Arch Intern. Med 1992;152:1381–1389.

    Article  PubMed  CAS  Google Scholar 

  21. Border JR, Hassett J, LaDuca J, Seibel R, Steinberg S, Mills B, et al: The gut origin septic states in blunt multiple trauma (ISS = 40) in the ICU. Ann Surg 1987;206:427–446.

    Article  PubMed  CAS  Google Scholar 

  22. Botha AJ, Moore FA, Moore EE, et al: Early discrepancy between plasma interleukin-8 (IL-8) levels and neutrophil (PMN) priming in postinjury multiple organ failure (MOF) suggests PMN dysfunction. Surg Forum 1994;45:100–102.

    Google Scholar 

  23. Botha AJ, Moore FA, Moore EE, Fontes B, Banerjee A, Peterson VM: Postinjury neutrophil priming and activation states: therapeutic challenges [editorial]. Shock 1995;3:157–166.

    Article  PubMed  CAS  Google Scholar 

  24. Botha AJ, Moore FA, Moore EE, Kim FJ, Banerjee A, Peterson VM: Postinjury neutrophil priming and activation: an early vulnerable window. Surgery 1995;118:358–364.

    Article  PubMed  CAS  Google Scholar 

  25. Brathwaite CEM, Ross SE, Nagele R, Mure JA, O’Malley KF, Garcia-Perez FA: Bacterial translocation occurs in humans after traumatic injury: evidence using immunofluorescence. J Trauma 1993;34:586–589.

    PubMed  CAS  Google Scholar 

  26. Cabie A, Farkas JC, Fitting C, Laurian C, Cormier JM, Carlet J, et al: High levels of portal TNF-a during abdominal aortic surgery in man. Cytokine 1993;5:448–453.

    Article  PubMed  CAS  Google Scholar 

  27. Cairns CB, Moore FA, Haenel JB, Gallea BL, Ortner JP, Rose SJ, et al: Evidence for early supply independent mitochondrial dysfunction in patients developing multiple organ failure after trauma. J Trauma 1997;42:532–536.

    Article  PubMed  CAS  Google Scholar 

  28. Caty MG, Guice KS, Oldham KT, Remick DG, Kunkel SI: Evidence for tumor necrosis factor-induced pulmonary microvascular injury after intestinal ischemia-reperfusion injury. Ann Surg 1990;212:694–700.

    Article  PubMed  CAS  Google Scholar 

  29. Chandra G, Cogswell JP, Miller LR: Cyclic AMP signaling pathways are important in IL-1 beta transcriptional regulation. J Immunol 1995;155:4535–4543.

    PubMed  CAS  Google Scholar 

  30. Chaudry IH, Ayala A: Mechanism of increased susceptibility to infection following hemorrhage. Am J Surg 1993;165:59S-67S.

    Article  PubMed  CAS  Google Scholar 

  31. Chaudry IH, Ertel W, Ayala A: Alterations in inflammatory cytokine production following hemorrhage and resuscitation. In Schlag G, Redl H, Traber DL (eds): Third Wiggers Bernard conference-cytokine network. Heidelberg-Berlin-New York, Springer, 1993, p 72–127.

    Google Scholar 

  32. Dawidson I, Gelin L-E, Hedman L, et al: Hemodilution and recovery from experimental intestinal shock in rats: a comparison of the efficacy of three colloids and one electrolyte solution. Crit Care Med 1981;9:42–46.

    Article  PubMed  CAS  Google Scholar 

  33. Dawidson I, Gelin LE, Haglind E: Plasma volume intravascular protein content, hemodynamic and oxygen transport changes during intestinal shock in dogs. Comparison of relative effectiveness of various plasma expanders. Crit Care Med 1980;8:75–82.

    Google Scholar 

  34. Deitch EA: Simple intestinal obstruction causes bacterial translocation in man. Arch Surg 1989;124:699–701.

    PubMed  CAS  Google Scholar 

  35. Deitch EA: The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg 1990;125:403–404.

    PubMed  CAS  Google Scholar 

  36. Deitch EA, Baker T, Berg R, Ma L: Hemorrhagic shock promotes the systemic translocation of bacteria from the gut. J Trauma 1987;27:815.

    Google Scholar 

  37. Deitch EA, Dazhong X, Franko L, Ayala A, Chaudry IH: Evidence favoring the role of the gut as a cytokine-generating organ in rats subjected to hemorrhagic shock. Shock 1994;1:141–146.

    Article  PubMed  CAS  Google Scholar 

  38. Deitch EA, Mancini MC: Complement receptors in shock and transplantation. Arch Surg 1993;128:1222–1226.

    PubMed  CAS  Google Scholar 

  39. Demling R, LaLonde C, Saldinger P: Multiple-organ dysfunction in the surgical patient: pathophysiology, prevention and treatment. Curr Probl Surg 1993;30:347–414.

    Article  Google Scholar 

  40. Dhainaut JF, Vincent JL, Richard C, Lejeune P, Martin C, Fierobe L, et al: CDP571, a humanized antibody to human tumor necrosis factor-alpha: safety, pharmacokinetics, immune response, and influence of the antibody on cytokine concentrations in patients with septic shock. CPD571 Sepsis Study Group. Crit Care Med 1995;23:1461–1469.

    Article  PubMed  CAS  Google Scholar 

  41. Di Padova FE, Brade H, Barclay GR, Poxton IR, Liehl E, Schuetze E, et al: A broadly cross-protective monoclonal antibody binding to Escherichia coli and Salmonella lipopolysaccharides. Infect Immun 1993;61:3863–3872.

    PubMed  Google Scholar 

  42. Endo S, Inada K, Yamada Y, Takakuwa T, Kasai T, Nakae H, et al: Plasma endotoxin and cytokine concentrations in patients with hemorrhagic shock. Crit Care Med 1994;22:949–955.

    Article  PubMed  CAS  Google Scholar 

  43. Eriksson S, Olander B, Pira U, Granström L: White blood cell count, leucocyte elastase activity, and serum concentrations of interleukin-6 and C-reactive protein after open appendicectomy. Eur. J Surg 1997;163:123–127.

    PubMed  CAS  Google Scholar 

  44. Ertel W, Morrison MH, Ayala A, Perrin MM, Chaudry IH: Anti-TNF monoclonal antibodies prevent hemorrhage-induced suppression of Kupffer cell antigen presentation and MHC class II antigen expression. Immunology 1991;74:290–297.

    PubMed  CAS  Google Scholar 

  45. Evans T, Carpenter A, Kinderman H, Cohen J: Evidence of increased nitric oxide production in patients with the sepsis syndrome. Circ Shock 1993;41:77–78.

    PubMed  CAS  Google Scholar 

  46. Fabian TC, Croce MA, Stewart RM, et al: Neutrophil CD18 expression and blockade after traumatic shock and endotoxin challenge. Ann Surg 1994;220:552–563.

    Article  PubMed  CAS  Google Scholar 

  47. Fong Y, Tracey KJ, Moldawer LL, Hesse DG, Manogue KB, Kenney JS, et al: Antibodies to cachectin tumor necrosis factor reduce interleukin 1a and interleukin 6 appearance during lethal bacteremia. J Exp Med 1989;170:1627–1633.

    Article  PubMed  CAS  Google Scholar 

  48. Foulkes R, Hughes B, Kingaby R, Woodger R, Vetterlein O: Anti-TNF treatment reduces severity of organ damage in a concious rabbit model of hemorrhagic/traumatic shock. Intensive Care Med 1994;20:72 (abstr).

    Google Scholar 

  49. Friese RS, Rehring TF, Wollmering M, Moore EE, Ketch LL, Banerjee A, et al: Trauma primes cells: editorial review. Shock 1994;1:388–394.

    Article  PubMed  CAS  Google Scholar 

  50. Froon AHM, Bemelmans MHA, Greve JW, Van der Linden CJ, Buurman WA: Increased plasma concentrations of soluble tumor necrosis factor receptors in sepsis syndrome: correlation with plasma creatinine values. Crit Care Med 1994;22:803–809.

    Article  PubMed  CAS  Google Scholar 

  51. Fry DE: Multiple System Organ Failure. St. Louis, Mosby Year Book, 1992.

    Google Scholar 

  52. Garrison RN, Fry DE, Berberich S, Polk HC: Enterococcal bacteremia: clinical implications and determinants of death. Ann Surg 1982;196:43–47.

    Article  PubMed  CAS  Google Scholar 

  53. Gennari R, Alexander JW, Pyles T, Hartmann S, Ogle CK: Effects of antimurine interleukin-6 of bacterial translocation during gut-derived sepsis. Arch Surg 1994;129:1191–1197.

    PubMed  CAS  Google Scholar 

  54. Goris JRA, Boekholtz W, van Bebber I, Nuytinck J, Schillings P: Multiple organ failure and sepsis without bacteria. An experimental model. Arch Surg 1986;121:897–901.

    PubMed  CAS  Google Scholar 

  55. Goris RJ, te Boekhorst TP, Nuytinck JK, Gimbrere JS: Multiple-organ failure. Generalized autodestructive inflammation? Arch Surg 1985;120:1109–1115.

    PubMed  CAS  Google Scholar 

  56. Gram J, Jespersen J: A selective depression of tissue plasminogen activator (t-PA) activity in euglobulins characterizes a risk group among survivors of acute myocardial infarction. Thromb Haemost 1987;57:137–139.

    PubMed  CAS  Google Scholar 

  57. Grimble IRF: Nutritional antioxidants and the modulation of inflammation: therapy and practice. New Horiz 1994;2:175–185.

    PubMed  CAS  Google Scholar 

  58. Groeneveld ABJ, Bronsveld W, Thijs LG: Hemodynamic determinants of mortality in human septic shock. Surgery 1986;99:140–152.

    PubMed  CAS  Google Scholar 

  59. Grotz MR, Ding J, Guo W, Huang Q, Deitch EA: Comparison of plasma cytokine levels in rats subjected to superior mesenteric artery occlusion or hemorrhagic shock. Shock 1995;3:362–368.

    Article  PubMed  CAS  Google Scholar 

  60. Guthrie LA, McPhail LC, Henson PM, et al: The priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide: evidence for increased activity of the superoxide producing enzyme. J Exp Med 1984;160:1656–1671.

    Article  PubMed  CAS  Google Scholar 

  61. Haglund U: Hypoxic Damage. In Schlag G, Redl H (eds): Pathophysiology of shock, sepsis, and organ failure. Heidelberg-Berlin-New York, Springer, 1993, p 314–321.

    Google Scholar 

  62. Haglund U: Gut ischaemia. Gut 1994;35:S73-S76.

    PubMed  CAS  Google Scholar 

  63. Haglund U, Lundgren O: Intestinal ischemia and shock factors. Fed. Proc. 1978;37:2729–2733.

    PubMed  CAS  Google Scholar 

  64. Hammond JM, Potgieter PD, Saunders GL, Forder AA: Double-blind study of selective decontamination of the digestive tract in intensive care [see comments]. Lancet 1992;340:5–9.

    Article  PubMed  CAS  Google Scholar 

  65. Hamsten A, Walldius G, Szamosi A, et al: Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987;II:3–9.

    Article  Google Scholar 

  66. Hasegawa N, Husari AW, Hart WT, et al: Role of the coagulation system in ARDS. Chest 1994;105:268–277.

    PubMed  CAS  Google Scholar 

  67. Hauser CJ: Regional macrophage activation after injury and the compartmentalization of inflammation in trauma. New Horiz 1996;4:235–251.

    Google Scholar 

  68. Hechtman DH, Cybulsky MI, Fuchs HJ, et al: Intravascular IL-8: ihibitor of polymorphonuclear accumulation at sites of acute inflammation. J Immunol 1991;147:883–892.

    PubMed  CAS  Google Scholar 

  69. Heideman M: The role of complement in trauma. Acta Chir. Scand. 1985;522 (suppl): 233–244.

    CAS  Google Scholar 

  70. Heideman M, Gelin L-E: The general and local response to injury related to complement activation. Acta Chir Scand 1979;489 (suppl): 215–223.

    CAS  Google Scholar 

  71. Hesselvik JF, Blomback M, Bordin B, et al: Coagulation, fibrinolysis, and kallikrein systems in sepsis: relation to outcome. Crit Care Med 1989;17:724–733.

    Article  PubMed  CAS  Google Scholar 

  72. Hoch RC, Rodriguez R, Manning T, Bishop M, Mead P, Shoemaker WC, et al: Effects of accidental trauma on cytokine and endotoxin production. Crit Care Med 1996;21:839–845.

    Article  Google Scholar 

  73. Housholder GT: The role of the endothelium in in vivo coagulation. J Oral Maxillofac Surg 1991;49:507–511.

    PubMed  CAS  Google Scholar 

  74. Jiang JX, Bahrami S, Leichtfried G, Redl H, Oehlinger W, Schlag G: Kinetics of endotoxin and tumor necrosis factor appearence in portal and systemic circulation following hemorrhagic shock in rats. Ann Surg 1995;221:100–106.

    Article  PubMed  CAS  Google Scholar 

  75. Julou-Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR, Stocklet JC: Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 1990;259:H1038-H1043.

    PubMed  CAS  Google Scholar 

  76. Kelly JL, O’Sullivan C, O’Riordain M, O’Riordain D, Lyons A, Doherty J, et al: Is circulating endotoxin the trigger for the systemic inflammatory response syndrome seen after injury? Ann Surg 1997;225:530–543.

    Article  PubMed  CAS  Google Scholar 

  77. Kingham JG, Whorwell PJ, Loehry CA: Small intestine permeability. I. Effects of ischemia and exposure to acetyl salicylate. Gut 1976;17:354–361.

    PubMed  CAS  Google Scholar 

  78. Kneidinger R, Bahrami S, Redl H, Schlag G, Robinson M: Comparison of endothelial activation during endotoxic and posttraumatic conditions by serum analysis of soluble E-selectin in nonhuman primates. J Lab Clin Med 1996;128:515–519.

    Article  Google Scholar 

  79. Koike K, Moore EE, Moore FA, Read RA, Carl VS, Banerjee A: Gut ischemia/reperfusion produces lung injury independent of endotoxin. Crit Care Med 1994;22:1438–1444.

    Article  PubMed  CAS  Google Scholar 

  80. Korthuis RJ, Smith JK, Carden DL: Hypoxic reperfusion attenuates postischemic microvascular injury. Am J Physiol 1989;256:H315-H319.

    PubMed  CAS  Google Scholar 

  81. Koziol JM, Rush BF jr, Smith SM, Machiedo GW: Occurrence of bacteremia during and after hemorrhagic shock. J Trauma 1988;28:10–16.

    PubMed  CAS  Google Scholar 

  82. Loirat P, Johanson WG, van Saene HKF: First European consensus conference in intensive care medicine: selective decontamination of the digestive tract in intensive care and emergency medicine. Intens Care Med 1992;18:182–188.

    Article  Google Scholar 

  83. Marshall JC, Christou NV, Meakins JL: The gastrointestinal tract, The “undrained abscess” of multiple organ failure [see comments]. Ann Surg 1993;218:111–119.

    Article  PubMed  CAS  Google Scholar 

  84. Marzi I, Bauer M, Secci A, Bahrami S, Redl H, Schlag G: Effect of anti-tumor necrosis factor-alpha on leukocyte adhesion in the liver after hemorrhagic shock: An intravital microscopy study in the rat. Shock 1995;3:27–33.

    PubMed  CAS  Google Scholar 

  85. Marzi M, Bauer M, Reisdorf E, Bahrami S, Redl H, Buehren V: TNFa and PAF modulate leukocyte adhesion in the liver after hemorrhagic shock in vivo. Circ. Shock 1993;23 (suppl 1) (abstr).

  86. Mileski WJ, Winn RK, Vedder NB, Pohlman TH, Harlan JM, Rice CL: Inhibition of CD18-dependent neutrophil adherence reduces organ injury after hemorrhagic shock in primates. Surgery 1990;108:206–212.

    PubMed  CAS  Google Scholar 

  87. Moncada S, Palmer RMJ, Higgs EA: Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991;43:109–142.

    PubMed  CAS  Google Scholar 

  88. Moore F, Poggetti R, McAnena O, Peterson V, Abernathy C, Parsons P: Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma 1991;31:629–638.

    Article  PubMed  CAS  Google Scholar 

  89. Moore FA, Haemel JB, Moore EE, et al: Incommensurate oxygen consumption in response to maximal oxygen availability predicts postinjury oxygen failure. J Trauma 1992;33:58–63.

    Article  PubMed  CAS  Google Scholar 

  90. Moore FA, Moore EE: Evolving concepts in the pathogenesis of postinjury multiple organ failure. Surg Clin. North Am 1995;75:257–277.

    PubMed  CAS  Google Scholar 

  91. Moore FA, Moore EE, Read RA: Postinjury multiple organ failure: role of extrathoracic injury and sepsis in adult respiratory distress syndrome. New Horiz 1993;1:538–549.

    PubMed  CAS  Google Scholar 

  92. Moore FA, Peterson VM, Moore EE, Rundus C, Poggetti R: Inadequate granulopoiesis after major torso trauma: a hematopoietic regulatory paradox. Surgery 1990;108:667–675.

    PubMed  CAS  Google Scholar 

  93. Nast-Kolb D, Waydhas C, Gippner-Steppert C, Schneider I, Trupka A, Ruchholtz S, et al: Indicators of the posttraumatic inflammatory response correlate with organ failure in patients with multiple injuries, J Trauma 1997;42:446–455.

    PubMed  CAS  Google Scholar 

  94. Nava E, Palmer RMJ, Moncada S: The role of nitric oxide in endotoxic shock: effects of NG-monomethyl-L-arginine. J Cardiovasc. Pharmacol. 1992;20:132–134.

    Google Scholar 

  95. Partrick DA, Moore FA, Moore EE, Barnett CC, Silliman CC: Neutrophil priming and activation in the pathogenesis of postinjury multiple organ failure. New Horiz 1996;4:194–210.

    Google Scholar 

  96. Pasrks DA, Granger DN: Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol 1986;250:G749-G753.

    Google Scholar 

  97. Peitzman A, Udekwu A, Ochoa J, Smith S: Bacterial translocation in trauma patients. J Trauma 1991;31:1083–1087.

    PubMed  CAS  Google Scholar 

  98. Pizurki L, Polla BS: cAMP modulates stress protein synthesis in human monocytes-macrophages. J Cell Physiol 1977;161:1669–1677.

    Google Scholar 

  99. Redl H, Dinges HP, Buurman WA, Van der Linden CJ, Pober JS, Cotran RS, et al: Expression of endothelial leukocyte adhesion molecule-1 in septic but not traumatic/hypovolemic shock in the baboon. Am J Pathol 1991;139:461–466.

    PubMed  CAS  Google Scholar 

  100. Redl H, Schlag G, Bahrami S, Davies J, Stevens S, Foulkes R, et al: Influence of TNF antibody treatment on mediator release in baboon bacteremia/endotoxemia. In Alving CR, Munford RS, Stütz PL (eds): Bacterial Endotoxin: Recognition and Effector Mechanisms. Proceedings of the 2nd Congress of the International Endotoxin Society, Vienna, August 17–20, 1992. Amsterdam-London: Elsevier Science, 1993, p 433–441.

    Google Scholar 

  101. Redl H, Schlag G, Schiesser A, Davies J: Tumor necrosis factor is a mediator of phospholipase release during bacteremia in baboons. Am J Physiol 1993;264:H2119-H2123.

    PubMed  CAS  Google Scholar 

  102. Rhee P, Waxman K, Clark L, Kaupke CJ, Vaziri ND, Tominaga G, et al: Tumor necrosis factor and monocytes are released during hemorrhagic shock. Resuscitation 1993;25:249–255.

    Article  PubMed  CAS  Google Scholar 

  103. Roumen RM, Hendriks T, Wevers RA, Goris JA: Intestinal permeability after severe trauma and hemorrhagic shock is increased without relation to septic complications. Arch Surg 1993;128:453–457.

    PubMed  CAS  Google Scholar 

  104. Rush BFJ, Redan JA, Flanagan JJ, Heneghan JB, Hsieh J, Murphy TF, et al: Does the bacteremia observed in hemorrhagic shock have clinical significance? A study in germfree animals. Ann Surg 1989;210:342–347.

    Article  PubMed  Google Scholar 

  105. Rush BFJ, Sori AJ, Murphy TF, Smith S, Flanagan JJ, Machiedo GW: Endotoxemia and bacteremia during hemorrhagic shock: the link between trauma and sepsis? Ann Surg 1988;207:549–554.

    Article  PubMed  Google Scholar 

  106. Salonen EM, Vaheri A, Pollanen J, et al: Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin. J Biol Chem 1989;264:6339–6343.

    PubMed  CAS  Google Scholar 

  107. Scannell G, Waxman K, Kaml GJ, Ioli G, Gatanaga T, Yamamoto R, et al: Hypoxia induces a human macrophage cell line to release tumor necrosis factor-alpha and its soluble receptors in vitro. J Surg Res 1993;54:281–285.

    Article  PubMed  CAS  Google Scholar 

  108. Scannell G, Waxman K, Viziri ND, Zhang J, Kaupke CJ, Jalali M, et al: Hypoxia-induced alterations of neutrophil membrane receptors. J Surg Res 1995;59:141–145.

    Article  PubMed  CAS  Google Scholar 

  109. Schlag G, Redl H, Bahrami S, Davies J, Smuts P, Marzi I: Trauma and Cytokines. In Schlag G, Redl H, Traber L (eds): Shock.Sepsis, and Organ Failure. Berlin-Heidelberg-New York, Springer, 1993, p 128–155.

    Google Scholar 

  110. Schlag G, Redl H, Davies J, Haller I: Anti-tumor necrosis factor antibody treatment of recurrent bacteremia in a baboon model. Shock 1994;2:10–18.

    Article  PubMed  CAS  Google Scholar 

  111. Schlag G, Redl H, Dinges HP, Davies J, Radmore K: Bacterial translocation in a baboon model of hypovolemic-traumatic shock. In Schlag G, Redl H, Siegel JH, Traber DL (eds): Shock, Sepsis, and Organ Failure. Second Wiggers Bernard Conference. Berlin-Heidelberg-New York, Springer, 1991, p 53–83.

    Google Scholar 

  112. Schlag G, Redl H, Khakpour Z, Davies J, Pretorius J Hypovolemic-traumatic shock models in baboons. In Schlag G, Redl H (eds): Pathophysiology of Shock, Sepsis, and Organ Failure. Berlin-Heidelberg-New York, Springer, 1993, p 384–402.

    Google Scholar 

  113. Schluter B, Konig B, Bergmann U, Muller FE, Konig W: Interleukin 6 — a potential mediator of lethal sepsis after major thermal trauma: evidence for increased IL-6 production by peripheral blood mononuclear cells. J Trauma 1991;31:1663–1670.

    PubMed  CAS  Google Scholar 

  114. Schoenberg MH, Muhl E, Sellin D, et al: Posthypotensive generation of superoxide free radicals possible role in the pathogenesis of intestinal mucosa damage. Acta Chir Scand 1984;150:301–309.

    PubMed  CAS  Google Scholar 

  115. Shalaby MR, Waage A, Aarden L, Espevik T: Endotoxin, tumor necrosis factor-alpha and interleukin 1 induce interleukin 6 production in vivo. Clin Immunol Immunopathol 1989;53:488–498.

    Article  PubMed  CAS  Google Scholar 

  116. Sharma RJ, Macallan DC, Sedgwick P, Remick DG, Griffin GE: Kinetics of endotoxin-induced acute-phase protein gene expression and its modulation by TNF-alpha monoclonal antibody. Am J Physiol 1992;262:R786-R793.

    PubMed  CAS  Google Scholar 

  117. Shoemaker WC, Patil RS, Appel PL, et al: Hemodynamic and oxygen transport patterns for outcome prediction, therapeutic goals, and clinical algorithms: feasibility of artificial intelligence to customize algorithms. Chest 1992;102 (suppl): S617-S625.

    Google Scholar 

  118. Smith JS, Scannon PJ, The BPI Trauma Study Group: Phase II trial of rBPI21 (recombinant bactericidal / permeability-increasing protein) in adults with hemorrhage due to trauma. Shock 1997;8 (suppl 16).

  119. Springer T: Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994;76:301–314.

    Article  PubMed  CAS  Google Scholar 

  120. Starnes HF jr, Pearce MK, Tewari A, Yim JH, Zou JC, Abrams JS: Anti-IL-6 monoclonal antibodies protect against lethal Escherichia coli infection and lethal tumor necrosis factor-alpha challenge in mice. [Retracted by Starnes HF, Pearce M, Yim K, Abrams J, Tewari A, Zou J in: J Immunol 1992;148:1968]. J Immunol 1990;145:4185–4191.

    PubMed  CAS  Google Scholar 

  121. stern DL, Esposito C, Gerlach H, et al: Endothelium and regulation of coagulation. Diabetes Care 1991;14 (suppl 1):160–166.

    Article  PubMed  CAS  Google Scholar 

  122. Stirpe F, DellaCorte E: The regulation of rat liver xanthine oxidase: conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem 1969;244:3855–3863.

    PubMed  CAS  Google Scholar 

  123. Stylianos S, Wakabayashi G, Gelfand JA, Harris BH: Experimental hemorrhage and blunt trauma do not increase circulating tumor necrosis factor. J Trauma 1991;31:1063–1067.

    PubMed  CAS  Google Scholar 

  124. Szabo C, Mitchell C, Thiemermann C, Vane JR: Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol 1993;108:786–792.

    PubMed  CAS  Google Scholar 

  125. Tanaka H, Ogura H, Yokota J, et al: Acceleration of superoxide production from leukocytes in trauma patients. Ann Surg 1991;214:187–192.

    Article  PubMed  CAS  Google Scholar 

  126. Thiemermann C: The role of the L-arginine: nitric oxide pathway in circulatory shock. Adv Pharmacol 1994;28:45–79.

    PubMed  CAS  Google Scholar 

  127. Thiemermann C, Szabo C, Mitchell JA, Vane JR: Vascular hyporeactivity to vasoconstrictor agents and hemodynamic decompensation in hemorrhagic shock is mediated by nitric oxide. Proc Natl Acad Sci 1993;90:267–271.

    Article  PubMed  CAS  Google Scholar 

  128. Tschaikowsky K, Sittl R, Braun GG, et al: Increased fMet-Leu-Phe receptor expression and altered superoxide production of neutrophil granulocytes in septic and posttraumatic patients. Clin Invest 1993;72:18–25.

    Article  Google Scholar 

  129. van Furth R: Origin and turnover of monocytes and macrophages. Curr Top Pathol 1989;78:125–150.

    Google Scholar 

  130. van Goor H, Rosman C, Grond J, Kooi K, Wubbels GH, Bleichrodt RP: Translocation of bacteria and endotoxin in organ donors. Arch Surg 1994;129:1063–1066.

    PubMed  Google Scholar 

  131. Vassalli P: The pathophysiology of tumor necrosis factor. Ann Rev Immunol 1992;10:411–452.

    Article  CAS  Google Scholar 

  132. Weiss J, Elsbach P, Shu C, Castillo J, Grinna L, Horwitz A, et al: Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant Gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest 1992;90:1122–1130.

    Article  PubMed  CAS  Google Scholar 

  133. Welbourn CRB, Goldman G, Paterson IS, et al: Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil. Br J Surg 1991;78:651–655.

    Article  PubMed  CAS  Google Scholar 

  134. Wells CL: A decade of selective decontamination of the digestive tract as prophylaxis for infections in ICU patients: what have we learned? (editorial). Clin Infect Dis 1993;17:1055–1057.

    PubMed  CAS  Google Scholar 

  135. Windsor ACJ, Mullen PG, Fowler AA, et al: Role of the neutrophil in adult respiratory distress syndrome. Br J Surg 1993;80:10–17.

    Article  PubMed  CAS  Google Scholar 

  136. Yao Y-M, Bahrami S, Leichtfried G, Redl H, Schlag G: Significance of NO in hemorrhagic-induced hemodynamic alterations, organ injury, and mortality in rats. Am J Physiol 1996;270:H1616-H1623.

    Google Scholar 

  137. Yao Y-M, Bahrami S, Redl H, Fürst S, Schlag G: IL-6 release after intestinal ischemia/reperfusion in rats is under partial control of TNF. J Surg Res 1997;70:21–26.

    Article  PubMed  CAS  Google Scholar 

  138. Yao YM, Bahrami S, Leichtfried G, Redl H, Schlag G: Pathogenesis of hemorrhage-induced bacteria-endotoxin translocation in rats: effects of recombinant bactericidal-increasing protein (rBPI21). Ann Surg 1995;221:398–405.

    Article  PubMed  CAS  Google Scholar 

  139. Yao YM, Bahrami S, Redl H, Schlag G: Monoclonal antibody to tumor necrosis factor alpha attenuates hemodynamic dysfunction secondary to intestinal ischemia/reperfusion in rats. Crit Care Med 1996;24:1547–1553.

    Article  Google Scholar 

  140. Zingarelli B, Squadrito F, Altavilla D, Calapai G, Campo GM, Calo M, et al: Evidence for a role of nitric oxide in hypovolemic hemorrhagic shock. J Cardiovasc. Pharmacol 1992;19:982–986.

    Article  PubMed  CAS  Google Scholar 

  141. Zingarelli B, Squadrito F, Altavilla D, Calapai G, Di Rosa M, Caputi AP: Role of tumor necrosis factor-a in acute hypovolemic hemorrhagic shock in rats. Am J Physiol 1994;266:H1512-H1515.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahrami, S., Schlag, G. Pathophysiology of trauma — multiple organ failure. Acta Chir Austriaca 30, 325–331 (1998). https://doi.org/10.1007/BF02620088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02620088

Key-words

Schlüsselwörter

Navigation