Skip to main content

Advertisement

Log in

Auswirkungen des CO2-Pneumoperitoneums auf die Leber-und Lungenperfusion — Vergleich zweier Abdominaldrucke

Effect of the CO2-pneumoperitoneum on the hepatic and pulmonary perfusion — comparison of two abdominal pressures

  • Chirurgische Forschung
  • Published:
Acta chirurgica Austriaca Aims and scope Submit manuscript

Zusammenfassung

Grundlagen: Laparoskopische Eingriffe unter Verwendung eines CO2-Pneumoperitoneums (PP) haben einen Einfluß auf den System- und Lungenkreislauf und die Splanchnikusperfusion. Um einen „sicheren“ Abdominaldruck (IAP) für laparoskopische Operationen zu finden, wurde der hämodynamische und metabolische Effekt des PP untersucht.

Methodik: An 6 Schweinen wurde jeweils für 30 min ein IAP von 7 und 13 mm Hg angelegt. Die statistische Auswertung wurde mittels Varianzanalyse und Bonferroni-Holm-Korrektur durchgeführt.

Ergebnisse: In direkter Abhängigkeit von der Höhe des IAP stiegen Rechtsvorhofdruck (RAP: 13 ± 2 vs. 8 ± 1,5, p<0,002), mittlerer pulmonalarterieller Druck (MPAP: 37 ± 5 vs. 26 ± 3, p<0,05) und Portalvenendruck (Pvp, p<0,002; alle nach Bonferroni-Holm). Die transmuralen Drucke von RAP, MPAP, PCWP und Pvp waren erniedrigt als Ausdruck der geringeren Gefäßfüllung. Aortenfluß (Qaorta: 1,3 ± 0,4 vs. 1,5 ± 0,5 l/min, n.s.) und Portalvenenfluß (Qvp: 511 ± 117 vs. 589 ± 127 ml/min, n.s.) sanken nur tendenziell (p=0,02 ohne Bonferroni-Holm), während mittlerer arterieller Druck (MAP), Herzzeitvolumen (HZV) und Leberarterienfluß (Qha) unverändert blieben. Während die arterielle Sauerstoffsättigung mit der Höhe des IAP fiel, blieb die portalvenöse Sauerstoffsättigung trotz gesenktem Qvp unverändert.

Schlußfolgerungen: Der Effekt des CO2-Pneumoperitoneums vor allem auf die Gefäßabschnitte im Niederdruckbereich war bei 7 mm Hg IAP angedeutet und bei 13 mm Hg IAP deutlich ausgeprägt. Mit einem Abfall des Portalvenenflusses ist bei höheren Intraabdominaldrucken zu rechnen. Es ist ratsam, den Abdominaldruck für laparoskopische Operationen so gering wie möglich zu halten, und wenn es die Sicht und chirurgische Bewegungsfreiheit erlauben, nicht über 10 mm Hg einzustellen.

Summary

Background: CO2-pneumoperitoneum has numerous hemodynamic and metabolic effects. In order to get a "safe" abdominal pressure (IAP) for laparoscopic procedures the systemic and pulmonary circulation and the splanchnic perfusion during CO2-pneumoperitoneum was investigated.

Methods: In 6 pigs (31 ± 7 kg) an IAP of 7 and 13 mm Hg was installed for a period of 30 min at each pressure.

Results: In parallel with the increase in IAP the right atrial pressure (RAP, p<0.002), mean pulmonary artery pressure (MPAP, p<0.05), pulmonary capillary wedge pressure (PCWP), and portal pressure (Pvp, p<0.002) increased. However, the transmural pressures of RAP, MPAP, PCWP and Pvp decreased because of decreased filling of the vein and the gradient from the portal vein to the right atrium increased as an indicator of increased venous resistance. Cardiac output (CO), and hepatic arterial flow (Qha) were unchanged, whereas aortic (Qaorta: 1.3 ± 1.4 vs. 1.5 ± 0.5 l/min, n.s.), and portal flow (Qvp: 511 ± 117 vs. 589 ± 127 ml/min, n.s.) decreased slightly (p=0.02 without Bonferroni-Holm). Arterial pressure and heart rate were constant during pneumoperitoneum. Arterial O2-saturation decreased in parallel with IAP, but portal O2-saturation remained constant.

Conclusions: At 7 mm Hg IAP, the hemodynamic effects on the low flow — low pressure conduits were moderate, whereas they were pronounced at 13 mm Hg IAP. Liver perfusion decreases with increased intraabdominal pressure. We conclude that the abdominal pressure for laparoscopic procedures should be kept at lower limits, possibly not exceeding 10 mm Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bannenberg JJG, Rademaker BMP, Gründeman PF, Kalkman CJ, Meijer DW, Klopper PJ: Hemodynamics during laparoscopy in the supine or prone position. Surg Endosc 1995;9:125–127.

    Article  CAS  PubMed  Google Scholar 

  2. Dorsay DA, Greene FL, Baysinger CL: Hemodynamic changes during laparoscopic cholecystectomy monitored with transesophageal echocardiography. Surg Endosc 1995;9:128–134.

    Article  CAS  PubMed  Google Scholar 

  3. Goodale RL, Beebe DS, McNevin MP, Boyle M, Letourneau JG, Abrams J: Hemodynamic, respiratory, and metabolic effects of laparoscopic cholecystectomy. Am J Surg 1993;166:533–537.

    Article  CAS  PubMed  Google Scholar 

  4. Guyton AC: Textbook of medical physiology. Philadelphia, Saunders, 1986.

    Google Scholar 

  5. Ho HS, Gunther RA, Wolfe BM: Intraperitoneal carbon dioxide insufflation and cardiopulmonary function. Arch Surg 1992;127:928–933.

    Article  CAS  PubMed  Google Scholar 

  6. Ho HS, Saunders ChJ, Gunther RA, Wolfe BM: Effector of hemodynamics during laparoscopy: CO2 absorption or intra-abdominal pressure? J Surg Res 1995;59:497–503.

    Article  CAS  PubMed  Google Scholar 

  7. Holm S: A simple sequential rejective multiple test procedure. Scand J Statistics 1979;6:65–70.

    Google Scholar 

  8. Ishizaki Y, Bandai Y, Shimomura K, Abe H, Ohtomo Y, Idezuki Y: Changes in splanchnic blood flow and cardiovascular effects following peritoneal insufflation of carbon dioxide. Surg Endosc 1993;7:420–423.

    Article  CAS  PubMed  Google Scholar 

  9. Ishizaki Y, Bandai Y, Shimomura K, Abe H, Ohtomo Y, Idezuki Y: Safe intraabdominal pressure of carbon dioxide pneumoperitoneum during laparoscopic surgery. Surgery 1993;114:549–554.

    CAS  PubMed  Google Scholar 

  10. Johannsen G, Andersen M, Juhl B: The effect of general anesthesia on the hemodynamic events during laparoscopy with CO2-insufflation. Acta Anaesth Scand 1989;33:132–136.

    Article  CAS  PubMed  Google Scholar 

  11. Kashtan J, Green JF, Parsons EQ, Holcroft JW: Hemodynamic effect of increased abdominal pressure. J Surg Res 1981;30:249–255.

    Article  CAS  PubMed  Google Scholar 

  12. Kirk R: Experimental design. Belmont/California, Brooks/Cole, 1982.

    Google Scholar 

  13. Kubota K, Kajiura N, Teruya M, Ishihara T, Tsusima H, Ohta S, Nakao K, Arizono S: Alterations in respiratory function and hemodynamics during cholecystectomy under pneumoperitoneum. Surg Endosc 1993;7:500–504.

    Article  CAS  PubMed  Google Scholar 

  14. Lautt WW: Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol 1985;249:G549-G556.

    CAS  PubMed  Google Scholar 

  15. Luca A, Cirera I, Garcia-Pagan JC, Feu F, Pizcueta P, Bosch J, Rodes J: Hemodynamic effects of acute changes in intra-abdominal pressure in patients with cirrhosis. Gastroenterol 1993;104:222–227.

    CAS  Google Scholar 

  16. Luz CM, Polarz H, Böhrer H, Hundt G, Dörsam J, Martin E: Hemodynamic and respiratory effects of pneumoperitoneum and PEEP during laparoscopic pelvic lymphadenectomy in dogs. Surg Endosc 1994;8:25–27.

    Article  CAS  PubMed  Google Scholar 

  17. McLaughlin JG, Scheeres DE, Dean RJ, Bonnell BW: The adverse hemodynamic effects of laparoscopic cholecystectomy. Surg Endosc 1995;9:121–124.

    Article  CAS  PubMed  Google Scholar 

  18. Melville RJ, Frizis HI, Forsling ML, LeQuesne LP: The stimulus for vasopressin release during laparoscopy. Surg Gynecol Obstretr 1985;161:253–256.

    CAS  Google Scholar 

  19. Moffa SM, Quinn JV, Slotman GJ: Hemodynamic effects of carbon dioxide pneumoperitoneum during mechanical ventilation and PEEP. J Trauma 1993;35:613–618.

    Article  CAS  PubMed  Google Scholar 

  20. Myles PS: Bradyarrhythmias and laparoscopy: a prospective study of heart rate changes with laparoscopy. J Obstet Gynaecol 1991;31:171–173.

    CAS  Google Scholar 

  21. Portera ChA, Compton RP, Walters DN, Browder IW: Benefits of pulmonary artery catheter and transesophageal echocardiographic monitoring in laparoscopic cholecystectomy patients with cardiac disease. Am J Surg 1995;169:202–207.

    Article  CAS  PubMed  Google Scholar 

  22. Price HL: Effects of carbon dioxide on the cardiovascular system. Anesthesiology 1960;21:652–663.

    Article  CAS  PubMed  Google Scholar 

  23. Rademaker BM, Ringers J, Odoom JA, DeWit LT, Kalkman CJ, Oosting J: Pulmonary function and stress response after laparoscopic cholecystectomy: comparison with incision and influence of thoracic epidural analgesia. Anesth Analg 1992;75:381–385.

    Article  CAS  PubMed  Google Scholar 

  24. Williams MD, Murr PC: Laparoscopic insufflation of the abdomen depresses cardiopulmonary function. Surg Endosc 1993;7:12–16.

    Article  CAS  PubMed  Google Scholar 

  25. Windberger U, Siegl H, Woisetschläger R, Schrenk P, Podesser B, Losert U: Hemodynamic changes during prolonged laparoscopic surgery. Eur Surg Res 1994;26:1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Windberger U, Siegl H, Ferguson J, Schima H, Függer R, Herbst F, Schemper M, Losert U: Hemodynamic effects of prolonged abdominal insufflation for laparoscopic procedures. Gastrointest Endosc 1995;41:121–129.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Windberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windberger, U., Auer, R., Längle, F. et al. Auswirkungen des CO2-Pneumoperitoneums auf die Leber-und Lungenperfusion — Vergleich zweier Abdominaldrucke. Acta Chir Austriaca 30, 46–50 (1998). https://doi.org/10.1007/BF02619855

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619855

Schlüsselwörter

Key-words

Navigation