Skip to main content
Log in

Differentiation-arrested rat fetal lung in primary monolayer cell culture

IV. Paradoxical effect of a “fetal” pO2 on precursor incorporation into phospholipids and hormone responsiveness

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Differentiation-arrested lung cell cultures were developed from fetal rats of various gestational ages. In contrast to previously published observations with cultures in a pO2 of ∼142 mm Hg, cultures developed in a pO2 of ∼30 mm Hg, close to the normal fetal arterial pO2, have improved plating efficiency and a slightly increased growth rate. They did not, however, show gestation-dependent increases of choline incorporation into phospholipids, nor did immature lung cell cultures respond to dexamethasone or triiodothyronine, singly or in combination, by increased choline incorporation into saturated lecithin. The incorporation of choline and glycerol into lipids suggested a mature rate of lipid synthesis by immature cultures at a pO2 ∼30 mm Hg, despite preservation of an immature morphology. Electron microscope observations revealed no gross differences between immature cultures developed at either pO2. The cellular mechanisms underlying these differences are unclear but suggest that oxygen tension may significantly influence results obtained with in vitro studies of lipid synthesis by immature lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanswell, A. K.; Joneja, M. G.; Lindsay, J.; Vreeken, E. Differentiation-arrested rat fetal lung in primary monolayer cell culture. I. Development of a differentiation-arrested and growth-supporting culture system using carbon-stripped bovine fetal calf serum. Exp. Lung Res. 5: 37–48; 1983.

    Article  PubMed  CAS  Google Scholar 

  2. Torday, J. S. Glucocorticoid dependence of fetal lung maturation in vitro. Endocrinology 107: 839–844; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, J. M. The cultivation in fluid medium of organized liver, pancreas, and other tissues of fetal rats. Exp. Cell Res. 7: 518–529; 1954.

    Article  PubMed  CAS  Google Scholar 

  4. Sorokin, S. A study of development in organ cultures of mammalian lungs. Dev. Biol. 3: 60–83; 1961.

    Article  Google Scholar 

  5. Tanswell, A. K.; Joneja, M. G.; Vreeken, E.; Lindsay, J. Differentiation-arrested rat fetal lung in primary monolayer cell culture. II. Dexamethasone, triiodothyronine and insulin effects on different gestational age cultures. Exp. Lung Res. 5: 49–60; 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Possmayer, F. The perinatal lung. In: Jones, C. T., ed. Biochemical development of the fetus and neonate. New York: Elsevier Biomedical; 1982: 337–391.

    Google Scholar 

  7. Tanswell, A. K.; Smith, B. T. Influence of oxygen tension and cortisol environment upon growth and cortisone conversion to cortisol by cultured human fetal lung fibroblasts. Biol. Neonate 37: 32–38; 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Edwards, D. K.; Dyer, W. M.; Northway, W. H. Twelve years' experience with bronchopulmonary dysplasia. Pediatrics 59: 839–846; 1977.

    PubMed  CAS  Google Scholar 

  9. Hodson, W. A.; Truog, W. E.; Mayock, D. E.; Lyrene, R.; Woodrum, D. E. Bronchopul-monary dysplasia: The need for epidemiologic studies. J. Pediatr. 95: 848–851; 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Yam, J.; Frank, L.; Roberts, R. J. Age-related development of pulmonary antioxidant enzymes in the rat. Proc. Soc. Exp. Biol. Med. 157: 293–296; 1978.

    PubMed  CAS  Google Scholar 

  11. Tanswell, A. K.; Freeman, B. A. Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. I. Developmental profiles. Pediatr. Res. 18: 584–587; 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Freeman, B. A.; Crapo, J. D. Free radicals and tissue injury. Lab. Invest. 47: 412–426; 1982.

    PubMed  CAS  Google Scholar 

  13. Rudolph, A. M. Congenital diseases of the heart. Chicago: Year Book Medical Publishers; 1974.

    Google Scholar 

  14. Tanswell, A. K.; Freeman, B. A. Differentiation-arrested rat fetal lung in primary monolayer cell culture. III. Antioxidant enzyme activity. Exp. Lung Res. 6: 149–158; 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Balin, A. K.; Goodman, D. B.; Rasmussen, H.; Cristofalo, V. J. Atmospheric stability in cell culture vessels. In Vitro 12: 687–692; 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Kalina, M.; Pease, D. C. The preservation of ultrastructure in saturated phosphatidylcholines by tannic acid in model systems and type II pneumocytes. J. Cell Biol. 74: 726–741; 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Mason, R. J.; Nellenbogen, J.; Clements, J. A. Isolation of disaturated phosphatidylcholine with osmium tetroxide. J. Lipid Res. 17: 281–284; 1976.

    PubMed  CAS  Google Scholar 

  18. Possmayer, F.; Casola, P. G.; Chan, F.; MacDonald, P.; Ormseth, M. A.; Wong, T.; Harding, P. R. G.; Tokmakjian, S. Hormonal induction of pulmonary maturation in the rabbit fetus. Effects of maternal treatment with estradiol-17β on the endogenous levels of cholinephosphate, CDP-choline and phosphatidylcholine. Biochim. Biophys. Acta 664: 10–21; 1981.

    PubMed  CAS  Google Scholar 

  19. Paul, J. Cell and tissue culture. London: Churchill Livingstone; 1975.

    Google Scholar 

  20. Fleischaker, R. J.; Sinskey, A. J. Oxygen demand and supply in cell culture. Eur. J. Appl. Microbiol. Biotech. 12: 193–197; 1981.

    Article  Google Scholar 

  21. Kilburn, D. G.; Lilly, M. D.; Self, D. A.; Webb, F. C. The effect of dissolved oxygen partial pressure on the growth and carbohydrate metabolism of mouse LS cells. J. Cell Sci. 4: 25–37; 1969.

    PubMed  CAS  Google Scholar 

  22. Balin, A. K.; Goodman, D. B. P.; Rasmussen, H.; Cristofalo, V. J. The effect of oxygen tension on the growth and metabolism of WI38 cells. J. Cell Physiol. 89: 235–250; 1976.

    Article  PubMed  CAS  Google Scholar 

  23. Bradley, T. R.; Hodgson, G. S.; Rosendaal, M. The effect of oxygen tension on hematopoietic and fibroblast proliferationin vitro. J. Cell Physiol. 97: 519–522; 1978.

    Article  Google Scholar 

  24. Hollenberg, M. Effect of oxygen on cultured myocardial cells. Circ. Res. 28: 148–157; 1971.

    PubMed  CAS  Google Scholar 

  25. Taylor, W. G.; Richter, A.; Evans, V. J.; Sanford, K. K. Influence of oxygen and pH on plating efficiency and colony development of WI38 and Vero cells. Exp. Cell Res. 86: 152–156; 1974.

    Article  PubMed  CAS  Google Scholar 

  26. Taylor, W. G.; Carmalier, R. F.; Sanford, K. K. Density-dependent effect of oxygen on the growth of mammalian fibroblasts in culture. J. Cell Physiol. 95: 33–40; 1978.

    Article  PubMed  CAS  Google Scholar 

  27. Fisher, A. B.; Dodia, C. Lung as a model for evaluation of critical intracellular pO2 and pCO. Am. J. Physiol. 241: E47–50; 1981.

    PubMed  CAS  Google Scholar 

  28. Wilson, D. F.; Erecinska, M.; Drown, C.; Silver, I. A. The oxygen dependence of cellular energy metabolism. Arch. Biochem. Biophys. 195: 485–493; 1979.

    Article  PubMed  CAS  Google Scholar 

  29. Alper, R.; Kerr, J. S.; Kefalides, N. A.; Fisher, A. B. Relation between reduced alveolar pO2 and collagen biosynthesis in the perfused rat lung. J. Lab. Clin. Med. 99: 442–450; 1982.

    PubMed  CAS  Google Scholar 

  30. Nauck, M.; Wölfe, D.; Katz, N.; Jungermann, K. Modulation of the glucagon-dependent induction of phosphoenolpyruvate caroxykinase and tyrosine aminotransferase by arterial and venous oxygen concentrations in hepatocyte cultures. Eur. J. Biochem. 119: 657–661; 1981.

    Article  PubMed  CAS  Google Scholar 

  31. Stalcup, S. A.; Lipset, J. S.; Woan, J. M.; Leuenberger, P. Inhibition of angiotensin converting enzyme activity in cultured endothelial cells by hypoxia. J. Clin. Invest. 63: 966–976; 1979.

    Article  PubMed  CAS  Google Scholar 

  32. Pawelek, J. M. Effect of thyronine and low oxygen tension on chondrogenic expression in cell cultures. Dev. Biol. 19: 52–57; 1969.

    Article  PubMed  CAS  Google Scholar 

  33. Gross, I.; Wilson, C. M. Fetal lung in organ culture. IV. Supra-additive hormone interactions. J. Appl. Physiol. 52: 1420–1425; 1982.

    PubMed  CAS  Google Scholar 

  34. Kumegawa, M.; Takuma, T.; Ikeda, E.; Nakanishi, M.; Hosoda, S. Precocious differentiation of chick embryo pancreasin vitro. Role of prednisolone, insulin, andl-thyroxine. Biochim. Biophys. Acta 585: 554–562; 1979.

    PubMed  CAS  Google Scholar 

  35. Hitchcock, K. R. Lung development and the pulmonary surfactant system: Hormonal influences. Anat. Rec. 198: 13–34; 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Kikkawa, Y.; Smith, F. Cellular and biochemical aspects of pulmonary surfactant in health and disease. Lab. Invest. 49: 122–139; 1983.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the Medical Research Council of Canada, the Ontario Thoracic Society, and the Physicians' Services Incorporated Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanswell, A.K., Joneja, M.G., Possmayer, F. et al. Differentiation-arrested rat fetal lung in primary monolayer cell culture. In Vitro 20, 635–641 (1984). https://doi.org/10.1007/BF02619613

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619613

Key words

Navigation