Skip to main content
Log in

Effects of hyperoxia on biochemical indexes of pig aortic endothelial function

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

To determine what biochemical indexes might be useful in measuring the endothelial response to hyperoxia in vitro we exposed endothelial cell monolayers (ECM) from pig aortas to either hyperoxic (95% O2:5% CO2, 1 atm) or control conditions (95% air: 5% CO2) and made of following measurements: (a) DNA and protein contents remaining in the ECM; (b) lactate dehydrogenase (LDH) activity in the medium; (c) the net uptake of rubidium (Rb+) adenine, and adenosine; and (d) cellular ATP and medium lactate.

Twelve hours of hyperoxic exposure did not cause significant changes. After 24 or 48 h of hyperoxia, DNA and protein contents were decreased; LDH activity and the protein-to-DNA ratio were increased; adenosine uptake was decreased per ECM but was unchanged when corrected for culture DNA and protein content. Adenine uptake was un-altered as were cellular ATP content and medium lactate concentration. The net Rb+ uptake-to-DNA ratio was increased after 24 h but not after 48 h of hyperoxia. The extent of the DNA and LDH changes indicated that the cellular disturbance caused by hyperoxia was progressive from 12 to 48 h.

Presence of superoxide dismutase (250 U/ml) prevented both the increase of LDH activity and the decrease of protein after 48 h but did not affect the decrease of DNA. These results suggest that the cells remaining in the ECM after hyperoxia have normal biochemical function and may represent a subpopulation of cells more resistant to oxygen toxicity than the damaged cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kistler, G. S.; Caldwell, P. R. B.; Weibel, E. R. Development of fine structural damage of alveolar and capillary lining cells in oxygen-poisoned rat lungs. J. Cell Biol. 32: 605–628; 1967.

    Article  PubMed  CAS  Google Scholar 

  2. Kapanci, Y.; Weibel, E. R.; Kaplan, H. P.; Robinson, F. R. Pathogenesis and reversibility of pulmonary lesions of oxygen toxicity in monkeys. II. Ultrastructural and morphometric studies. Lab. Invest. 20: 101–118; 1969.

    PubMed  CAS  Google Scholar 

  3. Block, E. R.; Fisher, A. B. Depression of serotonin clearance by rat lungs during oxygen exposure. J. Appl. Physiol. 42: 33–38; 1977.

    PubMed  CAS  Google Scholar 

  4. Jaffe, E. A.; Nachman, R. L.; Becker, C. G.; Minick, R. Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J. Clin. Invest. 52: 2745–2756; 1973.

    PubMed  CAS  Google Scholar 

  5. Junod, A. F.; Ody, C. Amine uptake and metabolism by endothelium of pig pulmonary artery and aorta. Am. J. Physiol. 232: C88-C94; 1977.

    PubMed  CAS  Google Scholar 

  6. Block, E. R.; Stalcup, S. A. Depression of serotonin uptake by cultured endothelial cells exposed to high O2 tension. J. Appl. Physiol. 50: 1212–1219; 1981.

    PubMed  CAS  Google Scholar 

  7. Shepro, E.; Batbouta, J. C.; Roblee, L. S.; Carson, M. P.; Belemarich, F. A. Serotonin transport by cultured bovine aortic endothelium. Circ. Res. 36: 799–806; 1975.

    PubMed  CAS  Google Scholar 

  8. Rubin, D. B.; Housset, B.; Junod, A. F. Purine and serotonin uptakes are not sensitive indicators of hyperoxic injury to endothelial cells in vitro. Am. Rev. Respir. Dis. 123(2): 217; 1981.

    Google Scholar 

  9. DeBono, D. P.; McIntyre, D. E.; White, D. J. G.; Gordon, J. L. Endothelial adenine uptake as an assay for cell or complement-mediated cytotoxicity. Immunology 32: 221–226; 1977.

    PubMed  CAS  Google Scholar 

  10. Underwood, E. J. Trace elements in human and animal nutrition. New York: Academic Press; 1977; 442–443.

    Google Scholar 

  11. Dunham, P. B.; Hoffman, F. F. Na and K transport in red blood cells. Andreoli, T. E.; Hoffman, J. F.; Fanestil, D. D. eds. Physiology of membrane disorders. New York: Plenum Medical Book Co.; 1978; 225–272.

    Google Scholar 

  12. Block, E. R.; Fisher, A. B. Prevention of hyperoxic-induced depression of pulmonary serotonin clearance by pre-treatment with superoxide dismutase. Am. Rev. Respir. Dis. 116: 441–447; 1977.

    PubMed  CAS  Google Scholar 

  13. Dieterle, Y.; Ody, C.; Ehrensberger, A.; Stalder, H.; Junod, A. F. Metabolism and uptake of adenosine triphosphate and adenosine by porcine aortic and pulmonary endothelial cells and fibroblasts in culture. Circ. Res. 42: 869–876; 1978.

    PubMed  CAS  Google Scholar 

  14. Gimbrone, M. A., Jr. Culture of vascular endothelium. Spaet, T. J. ed. Progress in hemostasis and thrombosis. New York: Grune and Stratton; 1976: 1–28.

    Google Scholar 

  15. Randerath, K. Nucleic acid constituents and nucleotide coenzymes. Thin layer chromatography. New York: Verlag Chemie, Academic Press; 1963: 220–225.

    Google Scholar 

  16. Randerath, K.; Randerath, E. Ion-exchange chromatography of nucleotides on poly-(ethyleneimine)-cellulose thin layers. J. Chromatogr. 16: 111–125; 1964.

    Article  PubMed  CAS  Google Scholar 

  17. Bergmeyer, H. U.; Bernt, E.; Hess, B. Lactic dehydrogenase. Bergmeyer, H. U., ed. Methods of enzymatic analysis. New York: Verlag Chemie, Academic Press; 1965: 736–741.

    Google Scholar 

  18. Wroblewski, F.; LaDue, J. S. LDH activity in blood. Proc. Soc. Exp. Biol. Med. 90: 210–213; 1955.

    PubMed  CAS  Google Scholar 

  19. Marbach, E. P.; Weil, M. H. Rapid enzymatic measurement of blood lactate and pyruvate. Use and significance of metaphosphoric acid as a common precipitant. Clin. Chem. 13: 314–325; 1967.

    PubMed  CAS  Google Scholar 

  20. Stanley, P. E.; Williams, S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal. Biochem. 29: 381–392; 1969.

    Article  PubMed  CAS  Google Scholar 

  21. Setaro, F.; Morley, C. G. D. A modified fluorometric metric method for the determination of microgram quantities of DNA from cells of tissue cultures. Anal. Biochem. 71: 313–317; 1976.

    Article  PubMed  CAS  Google Scholar 

  22. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  23. Zar, J. H. Biostatistical analysis. Englewood Cliffs, N. J.: Prentice Hall, Inc.; 1974: 121–124, 131–144, 151–159, 163–170.

    Google Scholar 

  24. Acosta, D.; Li, C. P. Injury to primary cultures of rat heart endothelial cells by hypoxia and glucose deprivation. In Vitro 15: 929–934; 1979.

    Article  PubMed  CAS  Google Scholar 

  25. Voisin, C.; Aerts, C.; Tonnel, A. B.; Dutriez, N. Aerocontaminants gazeux et defense phagocytaire de l'appareil respiratoire. Nouv. Presse Med. 8: 2089–2094; 1976.

    Google Scholar 

  26. Balin, A. K.; Goodman, D. B. P.; Rasmussen, H.; Cristofalo, V. J. The effect of oxygen tension on the growth and metabolism in WI-38 cells. J. Cell Physiol. 89: 235–250; 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Brosemer, R. W.; Rutter, W. J. The effect of oxygen tension on the growth and metabolism of a mammalian cell. Exp. Cell Res. 25: 101–113; 1961.

    Article  PubMed  CAS  Google Scholar 

  28. Mustafa, M. G.; Tierney, D. F. Biochemical and metabolic changes in the lung with oxygen, ozone and nitrogen dioxide toxicity (state of the art). Am. Rev. Respir. Dis. 118: 1061–1090; 1978.

    PubMed  CAS  Google Scholar 

  29. Lum, C. T.; Marz, R.; Plagemann, P. G. W.; Wohlhueter, R. M. Adenosine transport and metabolism in mouse leukemia cells and in canine thymocytes and peripheral blood leukocytes. J. Cell Physiol. 101: 173–200; 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Lubin, M. Intracellular potassium and macromolecular synthesis in mammalian cells. Nature 213: 451–453; 1967.

    Article  PubMed  CAS  Google Scholar 

  31. Kimelberg, H. K.; Mayhew, E. Increased ousbainsensitive86Rb+ uptake and sodium and potassium ion-activated adenosine triphosphate activity in transformed cell lines. J. Biol. Chem. 250: 100–104; 1975.

    PubMed  CAS  Google Scholar 

  32. Suttorp, N.; Simon, L. M. Lung cell oxidant injury—enhancement of polymorphonuclear leukocyte-mediated cytotoxicity in lung cells exposed to sustained in vitro hyperoxia. J. Clin. Invest. 70: 342–350; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by Swiss National Science Foundation Grant 3.224.077 and by National Institutes of Health Grant HL00310-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, D.B., Housset, B., Jean-Mairet, Y. et al. Effects of hyperoxia on biochemical indexes of pig aortic endothelial function. In Vitro 19, 625–634 (1983). https://doi.org/10.1007/BF02619576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619576

Key words

Navigation