Skip to main content
Log in

Alligator mandibular development during long term organ culture

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

The development of the first branchial (mandibular) arch of the American alligator (Alligator mississippiensis) is studied in organ culture for the first time. There is extensive mandibular morphogenesis in vitro and the pattern of the differentiated elements, bones, muscles, and cartilage, is comparable to that found during normal development in ovo. In addition, we observe the development of paired lingual swellings and the formation of a small tongue consisting of fibrous, lipid containing, and muscular tissues, as found in the normal tongue. Several culture variables are examined: (a) although alligator embryos normally develop at 30°C, we successfully culture the mandibular rudiments with good short term (3 wk) results at 37°CC; (b) at 30° C, we are able to culture arches for long term periods of 6 wk; (c) the mandibular arches develop well in both serum containing medium and in a chemically defined medium free from added hormones. The reptilian mandibular arches exhibit excellent, patterned, development and may have less stringent culture requirements than their avian and mammalian counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferguson, M. W. J. The value of the American alligator (Alligator mississippiensis) as a model for research in craniofacial development. J. Craniofacial. Genet. Dev. Biol. 1: 123–144; 1981.

    CAS  Google Scholar 

  2. Butler, G. W. On the sub-division of the body cavity in lizards, crocodiles and birds. Proc. Zool. Soc. Lond. 1889: 452–474.

  3. Bellairs, A. d'A.; Attridge, J. Reptiles. London: Hutchinson University Library; 1975: 115–128.

    Google Scholar 

  4. Webb, G. J. W. Comparative cardiac anatomy of the reptilia. III. J. Morph. 161: 221–240; 1979.

    Article  Google Scholar 

  5. Jacobson, W.; Fell, H. B. The developmental mechanics and potencies of the undifferentiated mesenchyme of the mandible. Q. J. Microsc. Sci. 82: 563–591; 1941.

    Google Scholar 

  6. Hall, B. K. Tissue interactions and the initiation of osteogenesis and chondrogenesis in the neural crest-derived mandibular skeleton of the embryonic mouse as seen in isolated murine tissues and in recombinations of murine and avian tissues. J. Embyol. Exp. Morph. 58: 251–264; 1980.

    CAS  Google Scholar 

  7. Tyler, M. S.; Hall, B. K. Epithelial influences on skeletogenesis in the mandible of the embryonic chick. Anat. Rec. 188: 229–240; 1977.

    Article  PubMed  CAS  Google Scholar 

  8. Slavkin, H. C.; Bringas, P.; Cummings, E.; Grodin, M. S. Initiation of quail and mouse mandibular chondrogenesis and osteogenesis in a serumless, chemically-defined medium. Calcif. Tissue Int. 34: 111–112; 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Ferguson, M. W. J.; Joanen, T. Temperature of egg incubation determines sex inAlligator mississippiensis. Nature 296: 850–853; 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Ferguson, M. W. J. Crocodilian embryology: an overview. Tyron, B. W.; Lang, J. W. eds. The reproductive biology and conservation of crocodilians. SSAR Symposium. 1982. In press.

  11. Ferguson, M. W. J. The reproductive biology and embryology of the crocodilians. Gans, C.; Billett, F. S. eds. Biology of the reptilia, Vol. 14. London: Academic Press. In press.

  12. Yamada, M.; Bringas, P.; Grodin, M.; MacDougall, M.; Cummings, E.; Grimmett, J.; Weliky, B.; Slavkin, H. C. Chemically-defined organ culture of embryonic mouse tooth organs: morphogenesis, dentinogenesis and amelogenesis. J. Biol. Buccale 8: 127–139; 1980.

    PubMed  CAS  Google Scholar 

  13. Summerbell, D.; Wolpert, L. Precision of development in chick limb morphogenesis. Nature 244: 228–230; 1973.

    Article  PubMed  CAS  Google Scholar 

  14. Ferguson, M. W. J. The structure and development of the plate inAlligator mississippiensis. Arch. Oral Biol. 26: 427–443; 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Hall, B. K. Developmental and cellular skeletal biology. London: Academic Press; 1978.

    Google Scholar 

  16. Pearson, A. A. The early innervation of the developing deciduous teeth. J. Anat. 123: 563–577; 1977.

    PubMed  CAS  Google Scholar 

  17. Kollar, E. J.; Lumsden, A. G. S. Tooth morphogenesis: The role of the innervation during induction and pattern formation. J. Biol. Buccale 7: 49–60; 1979.

    PubMed  CAS  Google Scholar 

  18. Farbman, A. I. The taste bud: a model system for development studies. Slavkin, H. C.; Bavetta, L. A. eds. Developmental aspects of oral biology. New York: Academic Press; 1972: 109–123.

    Google Scholar 

  19. Van Exan, R. J.; Hardy, M. H. A spatial relationship between innervation and the early differentiation of vibrissa of vibrissa follicles in the embryonic mouse. J. Anat. 131: 643–656; 1980.

    PubMed  Google Scholar 

  20. Kennedy, J. G. The development, structure, degeneration and regeneration of taste buds in the rat. Belfast, Northern Ireland: Queen's Univ. 1981. Thesis. p. 1–206.

    Google Scholar 

  21. Berkovitz, B. K. B.; Moore, M. H. A longitudinal study of replacement of patterns of teeth on the lower jaw and tongue in the rainbow troutSalmo gairdneri. Arch. Oral Biol. 19: 1111–1119; 1974.

    Article  PubMed  CAS  Google Scholar 

  22. Kollar, E. J. The use of organ cultures of embryonic tooth germs for teratological studies. Ebert, J. D.; Marois, M. eds. Tests of teratogenicityin vitro. Amsterdam: North Holland Publishing; 1976: 303–334.

    Google Scholar 

  23. De Ricqles, A. On bone histology of fossil and living reptiles with comments on its functional and evolutionary significance. Bellairs, A. d'A.; Cox, B. eds. Morphology and biology of the reptiles. Linnean Society, Symp. 3. London: Academic Press; 1976: 123–150.

    Google Scholar 

  24. De Buffrenil, V. Mise en évidence de l'incidence des conditions de milieu sur la croissance deCrocodylus siamensis (Schneider, 1801) et valeur des marques de croissance squelettiques pour l'évaluation de l'âge individuel. Arch. Zool. Exp. Gén. 121: 63–76; 1980.

    Google Scholar 

  25. Eilberg, R. G.; Zuckerberg, D. A. Mineralization of invertebrate cartilage. Calcif. Tissue Res. 19: 85–90; 1975.

    Article  PubMed  CAS  Google Scholar 

  26. Libbin, R. M.; Ozer, R.; Person, P.In vitro accumulation of mineral components by invertebrate cartilage. Calcif. Tissue Res. 22: 67–75; 1976.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Collection and specimen export was performed under U.S. Fish and Wildlife Permit PRT2-2511 and Northern Ireland Permit B/WL2/80 issued to M.W.J.F. Collaborative study was made possible by the 1981 award of a Research Travelling Scholarship to M.W.J.F. from The Wellcome Trust, for which we are grateful. This work is supported by Grant 8113610 CB from the MRC of Great Britain, Grant EP109/74/75 from the Northern Ireland Eastern Health & Social Services Board, and Grants DE-02848 and DE-03569 from the National Institutes of Health, Bethesda, MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, M.W.J., Honig, L.S., Bringas, P. et al. Alligator mandibular development during long term organ culture. In Vitro 19, 385–393 (1983). https://doi.org/10.1007/BF02619555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02619555

Key words

Navigation