Advertisement

In Vitro

, Volume 8, Issue 3, pp 117–125 | Cite as

Totipotency and embryogenesis in plant cell and tissue cultures

  • Indira K. Vasil
  • Vimla Vasil
Article

Summary

An important development in the field of plant cell and tissue culture has been the demonstration in the past decade of the totipotency of higher plant cells. Isolated single cells were first successfully grown on a nurse tissue separated by a filter paper and gave rise to a callus tissue. Later, completely isolated single cells of tobacco were grown in microchambers to form small clumps of cells which then could be differentiated to form adult tobacco plants. Indirect evidence of the totipotency of higher plant cells has also been provided in a number of other plants. Embryo-like structures (or embryoids) or whole plants, or both, have been obtained from such highly differentiated cells as the pollen grains (gametic and haploid), photosynthetic palisade cells in leaves, epidermal cells from the hypocytyl, and the triploid endosperm cells; all of these cell types perform very highly specialized functions in the plant. Plant protoplasts (cell wall is digested with enzymes) have also been cultured to give rise to normal adult plants. In many instances embryoids have been produced in vitro from several species of flowering plants which do not show such asexual activity in nature. These embryoids are normally indistinguishable morphologically from embryos produced by gametic fusion, often follow the same pattern of cell divisions and differentiation as the developing zygote, and are economically important as they provide clonal populations. Early work in this area emphasized the necessity of dissociating tissues into single cells and providing a nutritional environment identical to that of the zygote in the embryo sac (usually by supplementing the medium with liquid endosperm from coconuts), before the cells could be released morphogenetically to express their totipotency by forming embryoids. Much of the recent work, however, has shown that perfect development of embryoids can be obtained in completely synthetic media in callus tissues as well as in suspension cultures.

Keywords

Suspension Culture Vasil Zygotic Embryo Anther Culture Callus Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schleiden, M. J. 1838. Beiträge zur Phytogenesis. Arch. Anat. Physiol. Wiss. Med. (J. Müller) 1838: 137–176.Google Scholar
  2. 2.
    Schwann, T., 1839.Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstume der Tiere und Pflanzen. Leipzig: W. Engelmann, Nr. 176, Ostwalds Klassiker der exakten Wissenschaften, 1910.Google Scholar
  3. 3.
    Virchow, R., 1858.Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. A. Hirschwald, Berlin.Google Scholar
  4. 4.
    Vöchting, H. 1878, 1884.Über Organbildung im Pflanzenreich. Part I, 1878, Part II, 1884. Max Cohen, Bonn.Google Scholar
  5. 5.
    Haberlandt, G., 1902. Kulturversuche mit isolierten Pflanzenzellen. Sitzungser. Mat. Nat. K. Kais. Akad. Wiss. (Wien) 111: 69–92.Google Scholar
  6. 6.
    Krikorian, A. D., and D. L. Berquam. 1969. Plant cell and tissue culture: the role of Haberlandt. Bot. Rev. 35: 59–88.Google Scholar
  7. 7.
    Molliard, M., 1921. Sur le développement des plantules fragmentées. C. R. Soc. Biol. (Paris) 84: 770–772.Google Scholar
  8. 8.
    Kotte, W., 1922. Wurzelmeristem in Gewebekultur. Ber. Deut. Bot. Ges. 40: 269–272.Google Scholar
  9. 9.
    Kotte, W., 1922. Kulturversuche mit isolierten Wurzelspitzen. Beitr. Allg. Bot. 2: 413–434.Google Scholar
  10. 10.
    Robbins, W. J., 1922. Cultivation of excised root tips and stem tips under sterile conditions. Bot. Gaz. 73: 376–390.CrossRefGoogle Scholar
  11. 11.
    Robbins, W. J., 1922. Effect of autolyzed yeast and peptone on growth of excised corn root tips in the dark. Bot. Gaz. 74: 59–79.CrossRefGoogle Scholar
  12. 12.
    White, P. R., 1934. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 9: 585–600.PubMedGoogle Scholar
  13. 13.
    Gautheret, R. J., 1939. Sur la possibilité de réaliser la culture indéfinie des tissus de tubercules de carotte. C. R. Acad. Sci. (Paris) 208: 118–120.Google Scholar
  14. 14.
    Nobécourt, P., 1939. Sur la perennité et l’augmentation de volume des cultures de tissus végétaux. C. R. Soc. Biol. (Paris) 130: 1270.Google Scholar
  15. 15.
    White, P. R., 1939. Potentially unlimited growth of excised plant callus in an artificial nutrient. Am. J. Bot. 26: 59–64.CrossRefGoogle Scholar
  16. 16.
    Chrispeels, M. J., and J. B. Hanson. 1962. Content of cytoplasmic particulates of soybean hypocotyl induced by 2,4-dichlorophe-noxyacetic acid. Weeds 10: 123–125.Google Scholar
  17. 17.
    Key, J. L., and J. C. Shannon. 1964. Enhancement by auxin of ribonucleic acid synthesis in excised soybean hypocotyl tissue. Plant Physiol. 39: 360–364.PubMedGoogle Scholar
  18. 18.
    Key, J. L., C. Y. Lin, E. M. Gifford, Jr., and R. Dengler. 1966. Relation of 2,4-D-induced growth aberrations to changes in nucleic acid metabolism in soybean seedlings. Bot. Gaz. 127: 87–94.CrossRefGoogle Scholar
  19. 19.
    Gifford, E. M., Jr., and J. P. Nitsch. 1969. Responses of tobacco pith nuclei to growth substances. Planta (Berlin) 85: 1–10.Google Scholar
  20. 20.
    Johnson, J. M.. 1969. A study of nucleolar vacuoles in cultured tobacco cells using radioautography, actinomycin D, and electron microscopy. J. Cell Biol. 43: 197–206.PubMedCrossRefGoogle Scholar
  21. 21.
    Jordan, E. G., and J. M. Chapman. 1971. Ultrastructural changes in the nucleoli of Jerusalem artichoke (Helianthus tuberosus) tuber discs. J. Exp. Bot. 22: 627–634.CrossRefGoogle Scholar
  22. 22.
    Vasil, I. K. 1971. Physiology and ultrastructure of callus formation. In:Les Cultures de Tissus de Plantes. Colloq. Int. C.N.R.S. (Paris) 193: 103–112.Google Scholar
  23. 23.
    Yeoman, M. M. 1970. Early development in callus cultures. Int. Rev. Cytol. 29: 383–409.CrossRefGoogle Scholar
  24. 24.
    Muir, W. H., A. C. Hildebrandt, and A. J. Riker. 1954. Plant tissue cultures produced from single isolated cells. Science 119: 877–878.CrossRefGoogle Scholar
  25. 25.
    Muir, W. H., A. C. Hildebrandt, and A. J. Riker. 1958. The preparation, isolation, and growth in culture of single cells from higher plants. Am. J. Bot. 45: 589–597.CrossRefGoogle Scholar
  26. 26.
    Bergmann, L.. 1959. A new technique for isolating and cloning cells of higher plants. Nature (London) 184: 648–649.CrossRefGoogle Scholar
  27. 27.
    Bergmann, L.. 1960. Growth and division of single cells of higher plants in vitro. J. Gen. Physiol. 43: 841–851.PubMedCrossRefGoogle Scholar
  28. 28.
    Gibbs, J. L., and D. K. Dougall. 1963. Growth of single plant cells. Science 141: 1059.CrossRefPubMedGoogle Scholar
  29. 29.
    Blakely, L. M.. 1964. Growth and organized development of cultured cells. VI. The behaviour of individual cells on nutrient agar. Am. J. Bot. 51: 792–807.CrossRefGoogle Scholar
  30. 30.
    Blakely, L. M., and F. C. Steward. 1964. Growth and organized development of cultured cells. V. The growth of colonies from free cells on nutrient agar. Am. J. Bot. 51: 780–791.CrossRefGoogle Scholar
  31. 31.
    Earle, E. D., and J. G. Torrey. 1965. Colony formation by isolatedConvolvulus cells plated on defined media. Plant Physiol. 40: 520–528.PubMedCrossRefGoogle Scholar
  32. 32.
    Earle, E. D., and J. G. Torrey. 1965. Morphogenesis in cell colonies grown fromConvolvulus cell suspensions plated on synthetic media. Am. J. Bot. 52: 891–899.PubMedCrossRefGoogle Scholar
  33. 33.
    Reinert, J.. 1963. Growth of single cells from higher plants on synthetic media. Nature (London) 200: 90–91.CrossRefGoogle Scholar
  34. 34.
    Jones, L. E., A. C. Hildebrandt, A. J. Riker, and J. H. Wu. 1960. Growth of somatic tobacco cells in microculture. Am. J. Bot. 47: 468–475.CrossRefGoogle Scholar
  35. 35.
    Vasil, V., and A. C. Hildebrandt. 1965. Growth and tissue formation from single, isolated tobacco cells in microculture. Science 147: 1454–1455.CrossRefPubMedGoogle Scholar
  36. 36.
    Vasil, V., and A. C. Hildebrandt. 1965. Differentiation of tobacco plants from single, isolated cells in microcultures. Science 150: 889–892.CrossRefPubMedGoogle Scholar
  37. 37.
    Vasil, V., and A. C. Hildebrandt. 1967. Further studies on the growth and differentiation of single, isolated cells of tobacco in vitro. Planta (Berlin) 75: 139–151.Google Scholar
  38. 38.
    Steward, E. C., M. O. Mapes, and K. Mears. 1958. Growth and organized development of cultured cells. II. Organization in cultures from freely suspended cells. Am. J. Bot. 45: 705–708.CrossRefGoogle Scholar
  39. 39.
    Steward, F. C., M. O. Mapes, A. E. Kent, and R. D. Holsten. 1964. Growth and development of cultured plant cells. Science 143: 20–27.PubMedCrossRefGoogle Scholar
  40. 40.
    Vasil, I. K., A. C. Hildebrandt, and A. J. Riker. 1964. Endive plantlets from freely suspended cells and cell groups grown in vitro. Science 146: 76–77.PubMedCrossRefGoogle Scholar
  41. 41.
    Halperin, W., and D. F. Wetherell. 1964. Adventive embryony in tissue cultures of the wild carrot,Daucus carota. Am. J. Bot. 51: 274–283.CrossRefGoogle Scholar
  42. 42.
    Backs-Husemann, D., and J. Reinert. 1970. Embryobildung durch isolierte Einzelzellen aus Gewebekulturen vonDaucus carota. Protoplasma 70: 49–60.CrossRefGoogle Scholar
  43. 43.
    Guha, S., and S. C. Maheshwari. 1964. In vitro production of embryos from anthers ofDaturo. Nature (London) 204: 497.CrossRefGoogle Scholar
  44. 44.
    Guha, S., and S. C. Maheshwari. 1966. Cell division and differentiation of embryos in the pollen grains ofDatura in vitro. Nature (London) 212: 97.CrossRefGoogle Scholar
  45. 45.
    Narayanaswamy, S., and L. P. Chandy. 1971. In vitro production of haploid, diploid, and triploid androgenic embryoids and plantlets inDatura metel L. Ann. Bot. 35: 535–542.Google Scholar
  46. 46.
    Nitsch, J. P., and C. Nitsch. 1969. Haploid plants from pollen grains. Science 163: 85–87.CrossRefPubMedGoogle Scholar
  47. 47.
    Nitsch, J. P. 1969. Experiemntal androgenesis inNicotiana. Phytomorphology 19: 389–404.Google Scholar
  48. 48.
    Nakata, K., and M. Tanaka. 1968. Differentiation of embryoids from developing germ cells in anther culture of tobacco. Jap. J. Genet. 43: 65–71.Google Scholar
  49. 49.
    Niizeki, H., and K. Oono. 1971. Rice plants obtained by anther culture. In:Les Cultures de Tissus de Plantes. Colloq. Int. C.N.R.S. (Paris) 193: 251–257.Google Scholar
  50. 50.
    Kamyea, T., and K. Hinata. 1970. Induction of haploid plants from pollen grains ofBrassica. Jap. J. Breed. 20: 82–87.Google Scholar
  51. 51.
    Bhojwani, S. S., and B. M. Johri. 1970. Cytokinin-induced shoot bud differentiation in mature endosperm ofScurrula pulverulenta. Z. Pflanzenphysiol. 63: 269–275.Google Scholar
  52. 52.
    Bhojwani, S. S., and B. M. Johri. 1971. Morphogenetic studies on cultured mature endosperm ofCroton bonplandianum. New Phytol. 70: 761–766.CrossRefGoogle Scholar
  53. 53.
    Johri, B. M., and K. K. Nag. 1968. Experimental induction of triploid shoots in vitro from endosperm ofDentrophthoe falcata (L.f.) Ettings. Curr. Sci. 37: 606–607.Google Scholar
  54. 54.
    Vasil, I. K., and V. Vasil. 1971. Isolation and culture of plant protoplasts. Plant Sci. Bull. 17: 14–16.Google Scholar
  55. 55.
    Nagata, T., and I. Takebe. 1971. Platings of isolated tobacco mesophyll protoplasts on agar medium. Planta (Berlin) 99: 12–20.Google Scholar
  56. 56.
    Takebe, I., G. Labib, and G. Melchers. 1971. Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften (Berlin) 58: 318–320.CrossRefGoogle Scholar
  57. 57.
    Vasil, V., and I. K. Vasil. 1972. Growth and cell division in tobacco protoplasts cultured in microchambers, in press.Google Scholar
  58. 58.
    Levine, M. 1950. The growth of normal plant tissue in vitro as affected by chemical carcinogens and plant growth substances. I. The culture of the carrot tap-root meristem. Am. J. Bot. 37: 445–458.CrossRefGoogle Scholar
  59. 59.
    Wiggans, S. C. 1954. Growth and organ formation in callus tissues derived fromDaucus carota. Am. J. Bot. 41: 321–326.CrossRefGoogle Scholar
  60. 60.
    Reinert, J. 1958. Untersuchungen über die Morphogenese an Gewebekulturen. Ber. Deut. Bot. Ges. 71: 15.Google Scholar
  61. 61.
    Reinert, J. 1958. Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwissenschaften (Berlin) 45: 244–245.CrossRefGoogle Scholar
  62. 62.
    Reinert, J. 1959. Uber die Kontrolle der Morphogenese und die Induktion von Adventivembryonen an Gewebekulturen aus Karotten. Planta (Berlin) 53: 318–338.Google Scholar
  63. 63.
    Steward, F. C., L. M. Blakely, A. E. Kent, and M. O. Mapes. 1963. Growth and organization in free cell cultures. Brookhaven Symp. Biol. 16: 73–88.Google Scholar
  64. 64.
    Vasil, I. K., and H. C. Aldrich. 1970. A histochemical and ultrastructural study of the ontogeny and differentiation of pollen inPodocarpus macrophyllus D. Don. Protoplasma 71: 1–37.CrossRefGoogle Scholar
  65. 65.
    Halperin, W. 1970. Embryos from somatic plant cells. Symp. Int. Soc. Cell Biol. 9: 169–191.Google Scholar
  66. 66.
    Vasil, I. K., and A. C. Hildebrandt. 1966. Variations of morphogenetic behaviour in plant tissue cultures. II.Petroselinum hortense. Am. J. Bot. 53: 869–874.CrossRefGoogle Scholar
  67. 67.
    Vasil, I. K., and A. C. Hildebrandt. 1966. Variations of morphogenetic behaviour in plant tissue cultures. I.Cichorium endivia. Am. J. Bot. 53: 860–869.CrossRefGoogle Scholar
  68. 68.
    Konar, R. N., and K. Nataraja. 1965. Experimental studies inRanunculus sceleratus L. Development of embryos from the stem epidermis. Phytomorphology 15: 132–137.Google Scholar
  69. 69.
    Reinert, J., D. Backs, and M. Krosing. 1966. Faktoren der Embryogenese in Gewebekulturen aus Umbelliferen. Planta (Berlin) 68: 375–378.Google Scholar
  70. 70.
    Yamada, R., H. Nakagawa, and Y. Sinoto. 1967. Studies on the differentiation in cultured cells. I. Embryogenesis in three strains ofSolanum callus. Bot. Mag. (Tokyo) 80: 68–74.Google Scholar
  71. 71.
    Gamborg, O. L., F. Constabel, and R. A. Miller. 1970. Embryogenesis and production of albino plants from cell cultures ofBromus inermis. Planta (Berlin) 95: 355–358.Google Scholar
  72. 72.
    Tazawa, M., and J. Reinert. 1969. Extracellular and intracellular chemical environments in relation to embryogenesis in vitro. Protoplasma 68: 157–173.PubMedCrossRefGoogle Scholar
  73. 73.
    Kato, H., and M. Takeuchi. 1963. Morphogenesis in vitro starting from single cells of carrot root. Plant Cell Physiol. 4: 243–245.Google Scholar
  74. 74.
    Halperin, W. 1967. Population density effects on embryogenesis in carrot cell cultures. Exp. Cell Res. 48: 170–173.PubMedCrossRefGoogle Scholar
  75. 75.
    Halperin, W., and D. F. Wetherell. 1965. Ammonium requirement for embryogenesis in vitro. Nature (London) 205: 519–520.CrossRefGoogle Scholar
  76. 76.
    Kato, H., and M. Takeuchi. 1966. Embryogenesis from the epidermal cells of carrot hypocotyl. Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 16: 245–254.Google Scholar
  77. 77.
    Haccius, B., und K. K. Lakshmanan. 1969. Adventiv-Embryonen-Embryoide-Adventiv-Knopsen. Ein Beitrag zur Klärung der Begriffe. Öst. Bot. Z. 116: 145–158.CrossRefGoogle Scholar
  78. 78.
    Sunderland, N. 1971. Anther culture: a progress report. Sci. Progr. Oxford. 59: 527–549.Google Scholar

Copyright information

© Tissue Culture Association 1972

Authors and Affiliations

  • Indira K. Vasil
    • 1
  • Vimla Vasil
    • 1
  1. 1.Department of Botany and Department of AgronomyUniversity of FloridaGainesville

Personalised recommendations