Skip to main content
Log in

Anchorage independent growth of SV40 transformed human epithelial cells from amniotic fluids: Differences within and among cell donors

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Cells from seven individuals were cultured separately for the induction of morphological transformation by SV40. Sixty-three transformed colonies were tested for anchorage independent growth in soft agar at various passage levels. Colony formation was consistent for all clones of respective cell donors. Four donors yielded clones that grew in soft agar in the first passage. Clones from three donors were similar to controls and formed no colonies. The size of the agar colonies was constant in the early passages. Size differences were observed in later passages and for negative clones that gained anchorage independence during time in culture. The early passage positive type of anchorage independence is expressed concomitantly with morphological transformation. Considering that the clonal isolates are genetically homogeneous within cell donors and heterogeneous among cell donors, it is concluded that the phenotype of anchorage independence is determined by at least two genetic mechanisms; namely, the genotype of the cell donor (the hereditary type) or by culturally derived new genetic variability, or both.

Family history on cancer incidence showed that one grandparent for each of the four positive donors for the hereditary type of anchorage independence had cancer, whereas the grandparents of the three negative donors were asymptomatic. The incidence of cancer did not appear to be age related.

Chromosome analyses of two morphologically transformed colonies from each of the cell donors by the in situ technique, showed diploid and tetraploid cells and a small number of cells with rearrangements. It is concluded as previously that the progenitor transformed cell to the colony of cells is normal diploid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sack, G. H., Jr. Human cell transformation by simian virus 40—A Review. In Vitro 17: 1–19; 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Sager, R.; Kovac, P. E. Genetic analysis of tumorigenesis: I. Expression of tumor-forming ability in hamster cell lines. Somatic Cell Genet. 4: 375–392; 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Evans, C. H.; Di Paolo, J. H. Neoplastic transformation of guinea pig fetal cells in culture induced by chemical carcinogens. Cancer Res. 35: 1035–1044; 1975.

    PubMed  CAS  Google Scholar 

  4. Smith, H.In vitro properties of epithelial cell lines established from human carcinomas and non-malignant tissue. J. Natl. Cancer Inst. 62: 225–230; 1979.

    PubMed  CAS  Google Scholar 

  5. Kaighn, M. E.; Shankar, N. K.; Ohnuki, Y.; Jones, L. W.; Lechner, J. F. Differential properties among clones of simian virus 40-transformed human epithelial cells. Carcinogenesis 1: 635–645; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. McPherson, I. Agar suspension culture for quantitation of transformed cells. McPherson, I.; Habel, K.; Salzeman, N. P. eds. Fundamental technique in virology. New York: Academic Press; 1969; 214–219.

    Google Scholar 

  7. Montagnier, L. Factors controlling the multiplication of untransformed and transformed BHK21 cells under various environmental conditions. In: Wolstenholme, G. E. W.; Knight, J. eds. Growth control in cell cultures, Ciba Symposium. London: Churchill-Livingstone; 1971: 33–41.

    Google Scholar 

  8. Freedman, V. H.; Shin, S. Cellular tumorigenicity innude mice: Correlation with cell growth in semi-solid medium. Cell 3: 355–359; 1974.

    Article  PubMed  CAS  Google Scholar 

  9. Shin, S.; Freedman, V. H.; Risser, R.; Pollack, R. Tumorigenicity of virus-transformed cells innude mice is correlated specifically with anchorage independent growthin vitro. P.N.A.S. 72: 4435–4439; 1975.

    Article  PubMed  CAS  Google Scholar 

  10. Colburn, N. H.; Vorder Bruegge, W. F.; Bates, J. R.; Gray, R. H.; Rossen, J. D.; Kelsey, W. H.; Shimada, T. Correlation of anchorage-independent growth with tumorigenicity of chemically transformed mouse epidermal cells. Cancer Res. 38: 624–634; 1978.

    PubMed  CAS  Google Scholar 

  11. Barrett, J. C.; Ts'O, P. O. P. Evidence for the progressive nature of neoplastic transformationin vitro. Proc. Natl. Acad. Sci. U.S.A. 75: 3761–3765; 1978.

    Article  PubMed  CAS  Google Scholar 

  12. Cifone, M. A.; Fidler, I. J. Correlation of patterns of anchorage-independent growth within vivo behavior of cells from a murine fibrosarcoma. Proc. Natl. Acad. Sci. U.S.A. 77: 1039–1043; 1979.

    Article  Google Scholar 

  13. Katsuta, H.; Takeoka, T. Parameters for malignant transformation of mammalian cells treated with chemical carcinogens in tissue culture. In: Nakahara, W.; Takayama, S.; Sugemosa, T. et al. eds. Topics in chemical carcinogenesis. Tokyo: Univ. Tokyo Press; 1972: 389–400.

    Google Scholar 

  14. Howell, N.; Sager, R. Noncoordinate expression of SV 40-induced transformation and tumorigenicity in mouse cell hybrids. Somatic Cell Genet. 5: 129–143; 1979.

    Article  PubMed  CAS  Google Scholar 

  15. Stanbridge, E. J.; Wilkinson, J. Dissociation of anchorage independence from tumorigenicity in human cell hybrids. Int. J. Cancer 26: 1–8; 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Klinger, H. P. Suppression of tumorigenicity in somatic cell hybrids. I. Suppression and reexpression of tumorigenicity in diploid human x D98 AH2 hybrids and independent segregation f tumorigenicity from other cell phenotypes. Cytogenet. Cell Genet. 27: 254–266; 1980.

    PubMed  CAS  Google Scholar 

  17. Walen, K. H. Chromosome analyses and anchorage independent growth of SV40-induced morphologically transformed epithelial cells from amniotic fluids. In Vitro 6: 531–539; 1981.

    Google Scholar 

  18. Hoehn, H.; Bryant, E. M.; Karp, L. E.; Martin, G. M. Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. I. Clonal morphology and growth potential. Pediatr. Res. 8: 746–754; 1974.

    Article  PubMed  CAS  Google Scholar 

  19. Moorhead, P. S.; Saksela, E. The sequence of chromosome aberrations during SV40 transformation of a human diploid cell strain. Hereditas 52: 271–284; 1965.

    Article  PubMed  CAS  Google Scholar 

  20. Zuna, R. E.; Lehman, J. M. Heterogeneity of karyotype and growth potential in Simian virus 40-transformed Chinese hamster cell clones. J. Natl. Cancer Inst. 58: 1463–1472; 1977.

    PubMed  CAS  Google Scholar 

  21. Stocker, M.; O'Neill, C.; Berryman, S.; Waxman, V. Anchorage and growth regulation in normal and virus transformed cells. Int. J. Cancer 3: 683–693; 1968.

    Article  Google Scholar 

  22. Tucker, R. W.; Sanford, K. K.; Handleman, S. L.; Jones, G. M. Colony morphology and growth in agarose as tests for spontaneous neoplastic transformationin vitro. Cancer Res. 37: 1571–1579; 1977.

    PubMed  CAS  Google Scholar 

  23. Montesano, R.; Drevon, C.; Kuroki, T.; Saint Vicent, L.; Handleman, S.; Sanford, K. K.; DeFeo, D.; Bernard Weinstein, I. Test for malignant transformation of rat liver cells in culture: Cytology, growth in soft agar and production of plasminogen activator. J. Natl. Cancer Inst. 59: 1651–1657; 1977.

    PubMed  CAS  Google Scholar 

  24. Klinger, H. P.; Baim, A. S.; Eun, E. K.; Shows, T. B.; Ruddle, F. H. Human chromosomes which effect tumorigenicity in hybrids of diploid human with heteroploid human or rodent cells. Cytogenet. Cell Genet. 22: 245–249; 1978.

    PubMed  CAS  Google Scholar 

  25. Marshall, C. J.; Dave, H. Suppression of the transformed phenotype in somatic cell hybrids. J. Cell Sci. 33: 171–190; 1978.

    PubMed  CAS  Google Scholar 

  26. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194: 23–28; 1976.

    Article  PubMed  CAS  Google Scholar 

  27. Risser, R.; Rifkin, D.; Pollack, R. The stable classes of transformed cells induced by SV40 infection of established 3T3 cells and primary rat embryonic cells. Cold Spring Harbor Symposium Vol. 39: 1, 317–324; 1975.

    Google Scholar 

  28. Stanbridge, E. J.; Wilkinson, J. Analyses of malignancy in human cells: Malignant and transformed phenotypes are under separate control. Proc. Natl. Acad. Sci. U.S.A. 75: 1466–1469; 1978.

    Article  PubMed  CAS  Google Scholar 

  29. Walen, K. H. Somatic crossing-over in relationship to heterochromatin inDrosophila melanogaster. Genetics 49: 905–923; 1964.

    PubMed  CAS  Google Scholar 

  30. Kinsella, A. R.; Radman, M. Tumor promoter induces sister chromatid exchanges: Relevance to mechanisms of carcinogenesis. Proc. Natl. Acad. Sci. U.S.A. 75: 6149–6153; 1978.

    Article  PubMed  CAS  Google Scholar 

  31. Butel, J. C. The role of SV40 viral genes in cellular transformation. Progr. Med. Virol. 215: 88–102; 1975.

    Google Scholar 

  32. Steinberg, B.; Pollack, R.; Topp, W.; Botchan, M. Isolation and characterization of T antigen-negative revertants from a line of transformed rat cells containing one copy of the SV40 genome. Cell 13: 19–32; 1978.

    Article  PubMed  CAS  Google Scholar 

  33. Casto, B. C.; DiPaolo, J. A. Viruses, chemicals and cancer. Progr. Med. Virol. 16: 1–47; 1973.

    CAS  Google Scholar 

  34. Stiles, C. D.; Desmond, W., Jr.; Sato, G.; Saier, M. H., Jr. Failure of human cells transformed by Simian virus 40 to form tumors in athymic nude mice. Proc. Natl. Acad. Sci. U.S.A. 72: 4971–4975; 1975.

    Article  PubMed  CAS  Google Scholar 

  35. Koprowski, H.; Crose, C. M. Tumorigenicity of Simian virus 40-transformed human cells and mouse-human hybrids innude mice. Proc. Natl. Acad. Sci. U.S.A. 74: 1142–1146; 1977.

    Article  PubMed  CAS  Google Scholar 

  36. Lavialle, C. H.; Stevenet, J.; Morris, A. G.; Suarez, H. G.; Estrade, S.; Salomon, J. C.; Cassingena, R. Simian virus 40-Chinese hamster kidney cell interaction. I. Relationship of chromosome changes to transformation. Arch. Virol. 49: 127–139; 1975.

    Article  PubMed  CAS  Google Scholar 

  37. Connell, J. R.; Ockey, C. H. Analysis of karyotype variation following carcinogen treatment of Chinese hamster primary cell lines. Int. J. Cancer 20: 768–779; 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by NSF Grant PCM77-15876.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walen, K.H. Anchorage independent growth of SV40 transformed human epithelial cells from amniotic fluids: Differences within and among cell donors. In Vitro 18, 203–212 (1982). https://doi.org/10.1007/BF02618572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618572

Key words

Navigation