Skip to main content
Log in

Behavior of transforming growth factors in serum-free media: An improved assay for transforming growth factors

  • Rapid Communications
  • Published:
In Vitro Aims and scope Submit manuscript

Editor's Statement This communication describes a modification of the standard assay for transforming growth factors. The techniques employed make use of advantages provided by recent advances in serum-free cell culture to provide a well-defined detection system that is more sensitive than conventional procedures. Experimental approaches described in this article also should be helpful in unraveling differences in cellular behavior encountered under anchorage-dependent vs. anchorage-independent conditions. D. W. Barnes

Summary

Transforming growth factors (TGFs) are a relatively new category of factors that induce the anchorage-independent growth of non-transformed cells. These factors are usually detected by their ability to induce normal rat kidney (NRK) fibroblasts to grow in soft agar. Until now, this assay has been performed in serum-containing medium (SCM). Unfortunately, the background activity of this assay is variable and dependent on several factors, including passage number of the cells and the serum lot used. Furthermore, the addition of either EGF or TGF-β alone results in the appearance of additional colonies, which decreases the sensitivity of the assay. To circumvent these problems, serum-free media have been developed that support the growth of the NRK cells at low density in both monolayer culture and soft agar. Long-term growth in monolayer cultures occurs in serum-free medium supplemented with laminin, insulin, transferrin, epidermal growth factor (EGF), fibroblast growth factor (FGF) and high density lipoprotein (HDL). Growth in soft agar occurs when TGFs are added to a serum-free medium, AIG medium, that contains insulin, transferrin, FGF and HDL. In contrast to the background activity observed when the assay is performed in SCM, no colonies form in the AIG medium unless TGFs are added and few, if any, colonies form if EGF or TGF-β are added alone. Thus, the AIG medium provides an improved assay for TGFs. In addition, the AIG medium should prove useful for examining other factors, including serum factors, for TGF activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. De Larco, J. E. Sarcoma growth factor and the transforming growth factors. Guroff, G. ed. Growth and Maturation Factors. New York: John Wiley & Sons, Inc. 1983: 193–208.

    Google Scholar 

  2. Roberts, A. B.; Frolik, C. A.; Anzano, M. A.; Sporn, M. B. Transforming growth factors from neoplastic and nonneoplastic tissues. Fed. Proc. 42: 2621–2626; 1983.

    PubMed  CAS  Google Scholar 

  3. De Larco, J. E.; Todaro, G. J. Growth factors from murine sarcoma virus-transformed cells. Proc. Natl. Acad. Sci. USA 75: 4001–4005; 1978.

    Article  PubMed  Google Scholar 

  4. Kahn, P.; Shin, S-I. Cellular tumorigenicity in nude mice. J. Cell Biol. 82: 1–16; 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Cifone, M. A.; Fidler, I. J. Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc. Natl. Acad. Sci. USA 77: 1039–1043; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Roberts, A. B.; Anzano, M. A.; Lamb, L. C.; Smith, J. M.; Sporn, M. B. New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non-neoplastic tissues. Proc. Natl. Acad. Sci. USA 78: 5339–5343; 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Proper, J. A.; Bjornson, C. L.; Moses, H. L. Mouse embryos contain polypeptide growth factor(s) capable of inducing a reversible neoplastic phenotype in nontransformed cells in culture. J. Cell. Physiol. 110: 169–174; 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Twardzik, D. R.; Ranchalis, J. E.; Todaro, G. J. Mouse embryonic transforming growth factors related to those isolated from tumor cells. Cancer Res. 42: 590–593; 1982.

    PubMed  CAS  Google Scholar 

  9. Rizzino, A. Model systems for studying the differentiation of embryonal carcinoma cells. Cell Biol. Int. Rpts. 7: 559–560; 1983.

    Article  Google Scholar 

  10. Twardzik, D. R.; Sherwin, S. A.; Ranchalis, J.; Todaro, G. J. Transforming growth factors in the urine of normal, pregnant, and tumor-bearing humans. J. Natl. Can. Inst. 69: 793–798; 1982.

    CAS  Google Scholar 

  11. Halper, J.; Moses, H. L. Epithelial tissue-derived growth factor-like polypeptides. Cancer Res. 43: 1972–1979; 1983.

    PubMed  CAS  Google Scholar 

  12. Marquardt, H.; Hunkapiller, M. W.; Hood, L. E.; Todaro, G. Rat transforming growth factor type 1: Structure and relation to epidermal growth factor. Science 223: 1079–1082; 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Anzano, M. A.; Roberts, A. B.; Smith, J. M.; Sporn, M. B.; De Larco, J. E. Sarcoma growth factor from conditioned medium of virally transformed cellsis composed of both type α and type β transforming growth factors. Proc. Natl. Acad. Sci. USA 80: 6264–6268; 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Assoian, R. K.; Komoriya, A.; Meyers, C. A.; Miller, D. M.; Sporn, M. B. Transforming growth factor-β in human platelets. J. Biol. Chem. 258: 7155–7160; 1983.

    PubMed  CAS  Google Scholar 

  15. Frolik, C. A.; Dart, L. L.; Meyers, C. A.; Smith, D. M.; Sporn, M. B. Purification and initial characterization of a type β transforming growth factor from human placenta. Proc. Natl. Acad. Sci. USA 80: 3676–3680; 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Roberts, A. B.; Anzano, M. A.; Meyers, C. A.; Wideman, J.; Blacher, R.; Pan, Y-C. E.; Stein, S.; Lehrman, S. R.; Smith, J. M.; Lamb, L. C.; Sporn, M. B. Purification and properties of a type β transforming growth factor from bovine kidney. Biochemistry 22: 5692–5698; 1983.

    Article  PubMed  CAS  Google Scholar 

  17. Rizzino, A. Transforming growth factors assayed in serum-free media. In Vitro 20: 274; 1984.

    Google Scholar 

  18. De Larco, J. E.; Todaro, G. J. Epithelioid and fibroblastic rat kidney cell clones: epidermal growth factor (EGF) receptors and the effect of mouse sarcoma virus transformation. J. Cell. Physiol. 94: 335–342; 1978.

    Article  PubMed  Google Scholar 

  19. Rizzino, A.; Crowley, C. Growth and differentiation of embryonal carcinoma cell line F9 in defined media. Proc. Natl. Acad. Sci. USA 77: 457–461; 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Rizzino, A.; Orme, L. S.; De Larco, J. E. Embryonal carcinoma cell growth and differentiation: Production of and response to molecules with transforming growth factor activity. Exp. Cell Res. 143: 143–152; 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Bradshaw, G. L.; Dubes, G. R. Supplementary factors required for serum-free culture of rat kidney cells of line NRK-49F. In Vitro 19: 735–742; 1983.

    Article  PubMed  CAS  Google Scholar 

  22. McClure, D. B. Anchorage-independent colony formation of SV40 transformed BALB/c-3T3 cells in serum-free medium: Role of cell- and serum-derived factors. Cell 32: 999–1006; 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzino, A. Behavior of transforming growth factors in serum-free media: An improved assay for transforming growth factors. In Vitro 20, 815–822 (1984). https://doi.org/10.1007/BF02618298

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618298

Key words

Navigation